Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from peft import PeftModel, PeftConfig
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
peft_model_id = "burberg92/resume_summary"
|
6 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
7 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
8 |
+
config.base_model_name_or_path,
|
9 |
+
return_dict=True,
|
10 |
+
load_in_8bit=False,
|
11 |
+
device_map="auto",
|
12 |
+
)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
14 |
+
|
15 |
+
# Load the Lora model
|
16 |
+
model = PeftModel.from_pretrained(base_model, peft_model_id)
|
17 |
+
|
18 |
+
def make_inference(question):
|
19 |
+
input_text = "### Enter your Resume {}\n".format(question)
|
20 |
+
batch = tokenizer(input_text, return_tensors='pt')
|
21 |
+
|
22 |
+
with torch.cuda.amp.autocast():
|
23 |
+
output_tokens = model.generate(**batch, max_length=50, num_return_sequences=1)
|
24 |
+
|
25 |
+
return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
26 |
+
|
27 |
+
if __name__ == "__main__":
|
28 |
+
import gradio as gr
|
29 |
+
|
30 |
+
gr.Interface(
|
31 |
+
make_inference,
|
32 |
+
gr.inputs.Textbox(lines=2, label="Question"),
|
33 |
+
gr.outputs.Textbox(label="Answer"),
|
34 |
+
title="Exective Summary Generator",
|
35 |
+
description="Generated Executive Summary",
|
36 |
+
).launch()
|