Spaces:
Sleeping
Sleeping
File size: 18,675 Bytes
401217e 7c4b588 401217e af2e26f 7c4b588 9d6f821 401217e 9d6f821 401217e 4a74d0b 401217e 9d6f821 401217e 7c4b588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
#Import the libraries we know we'll need for the Generator.
import pandas as pd, spacy, nltk, numpy as np, re, os
from spacy.matcher import Matcher
from nltk.corpus import wordnet
#Attempting to fix the issue with spacy model in a more intuitive way.
try:
nlp = spacy.load("en_core_web_lg")
except:
script = "python -m spacy download en_core_web_lg"
os.system("bash -c '%s'" % script)
nlp = spacy.load("en_core_web_lg")
#Import the libraries to support the model and predictions.
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
import lime
import torch
import torch.nn.functional as F
from lime.lime_text import LimeTextExplainer
#Import the libraries for human interaction and visualization.
import altair as alt
import streamlit as st
from annotated_text import annotated_text as ant
#Import functions needed to build dataframes of keywords from WordNet
from WNgen import *
from NLselector import *
@st.experimental_singleton
def set_up_explainer():
class_names = ['negative', 'positive']
explainer = LimeTextExplainer(class_names=class_names)
return explainer
@st.experimental_singleton
def prepare_model():
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
return tokenizer, model, pipe
@st.experimental_singleton
def prepare_lists():
try:
wordnet.synsets("bias")
except:
nltk.download('omw-1.4')
nltk.download('wordnet')
countries = pd.read_csv("Assets/Countries/combined-countries.csv")
professions = pd.read_csv("Assets/Professions/soc-professions-2018.csv")
word_lists = [list(countries.Words.apply(lambda x: x.lower())),list(professions.Words)]
return countries, professions, word_lists
#Provide all the functions necessary to run the app
#get definitions for control flow in Streamlit
def get_def(word, POS=False):
pos_options = ['NOUN','VERB','ADJ','ADV']
m_word = re.sub("(\W\s|\s)","_",word)
if POS in pos_options:
seed_definitions = [syn.definition() for syn in wordnet.synsets(m_word, pos=getattr(wordnet, POS))]
else:
seed_definitions = [syn.definition() for syn in wordnet.synsets(m_word)]
if len(seed_definitions) > 0:
seed_definition = col1.selectbox("Which definition is most relevant?", seed_definitions, key= "WN_definition")
if col1.button("Choose Definition"):
col1.write("You've chosen a definition.")
st.session_state.definition = seed_definition
return seed_definition
else:
col1.write("Please choose a definition.")
else:
col1.error("The word you've chosen does not have a definition within WordNet.")
###Start coding the actual app###
st.set_page_config(layout="wide", page_title="Natural Language Counterfactuals (NLC)")
layouts = ['Natural Language Explanation', 'Lime Explanation', 'MultiNLC', 'MultiNLC + Lime', 'VizNLC']
alternatives = ['Similarity', 'Sampling (Random)', 'Sampling (Fixed)', 'Probability']
alt_choice = "Similarity"
#Content in the Sidebar.
st.sidebar.info('This is an interface for exploring how different interfaces for exploring natural language explanations (NLE) may appear to people. It is intended to allow individuals to provide feedback on specific versions, as well as to compare what one offers over others for the same inputs.')
layout = st.sidebar.selectbox("Select a layout to explore.", layouts)
alt_choice = st.sidebar.selectbox("Choose the way you want to display alternatives.", alternatives) #Commented out until we decide this is useful functionality.
#Set up the Main Area Layout
st.title('Natural Language Counterfactuals (NLC) Prototype')
st.subheader(f'Current Layout: {layout}')
text = st.text_input('Provide a sentence you want to evaluate.', placeholder = "I like you. I love you.", key="input")
#Prepare the model, data, and Lime. Set starting variables.
tokenizer, model, pipe = prepare_model()
countries, professions, word_lists = prepare_lists()
explainer = set_up_explainer()
text2 = ""
text3 = ""
cf_df = pd.DataFrame()
if 'definition' not in st.session_state:
st.session_state.definition = "<(^_')>"
#Outline the various user interfaces we have built.
col1, col2, col3 = st.columns(3)
if layout == 'Natural Language Explanation':
with col1:
if st.session_state.input != "":
st.caption("This is the sentence you provided.")
st.write(text)
probability, sentiment = eval_pred(text, return_all=True)
nat_lang_explanation = construct_nlexp(text,sentiment,probability)
if layout == 'Lime Explanation':
with col1:
#Use spaCy to make the sentence into a doc so we can do NLP.
doc = nlp(st.session_state.input)
#Evaluate the provided sentence for sentiment and probability.
if st.session_state.input != "":
st.caption("This is the sentence you provided.")
st.write(text)
probability, sentiment = eval_pred(text, return_all=True)
options, lime = critical_words(st.session_state.input,options=True)
nat_lang_explanation = construct_nlexp(text,sentiment,probability)
st.write(" ")
st.altair_chart(lime_viz(lime))
if layout == 'MultiNLC':
with col1:
#Use spaCy to make the sentence into a doc so we can do NLP.
doc = nlp(st.session_state.input)
#Evaluate the provided sentence for sentiment and probability.
if st.session_state.input != "":
st.caption("This is the sentence you provided.")
st.write(text)
probability, sentiment = eval_pred(text, return_all=True)
options, lime = critical_words(st.session_state.input,options=True)
nat_lang_explanation = construct_nlexp(text,sentiment,probability)
#Allow the user to pick an option to generate counterfactuals from.
option = st.radio('Which word would you like to use to generate alternatives?', options, key = "option")
lc_option = option.lower()
if (any(lc_option in sublist for sublist in word_lists)):
st.write(f'You selected {option}. It matches a list.')
elif option:
st.write(f'You selected {option}. It does not match a list.')
definition = get_def(option)
else:
st.write('Awaiting your selection.')
if st.button('Generate Alternatives'):
if lc_option in word_lists[0]:
cf_df = gen_cf_country(countries, doc, option)
st.success('Alternatives created.')
elif lc_option in word_lists[1]:
cf_df = gen_cf_profession(professions, doc, option)
st.success('Alternatives created.')
else:
with st.sidebar:
ant("Generating alternatives for",(option,"opt","#E0FBFB"), "with a definition of: ",(st.session_state.definition,"def","#E0FBFB"),".")
cf_df = cf_from_wordnet_df(option,text,seed_definition=st.session_state.definition)
st.success('Alternatives created.')
if len(cf_df) != 0:
if alt_choice == "Similarity":
text2, text3 = get_min_max(cf_df, option)
col2.caption(f"This sentence is 'similar' to {option}.")
col3.caption(f"This sentence is 'not similar' to {option}.")
elif alt_choice == "Sampling (Random)":
text2, text3 = sampled_alts(cf_df, option)
col2.caption(f"This sentence is a random sample from the alternatives.")
col3.caption(f"This sentence is a random sample from the alternatives.")
elif alt_choice == "Sampling (Fixed)":
text2, text3 = sampled_alts(cf_df, option, fixed=True)
col2.caption(f"This sentence is a fixed sample of the alternatives.")
col3.caption(f"This sentence is a fixed sample of the alternatives.")
elif alt_choice == "Probability":
text2, text3 = abs_dif(cf_df, option)
col2.caption(f"This sentence is the closest prediction in the model.")
col3.caption(f"This sentence is the farthest prediction in the model.")
with st.sidebar:
st.info(f"Alternatives generated: {len(cf_df)}")
with col2:
if text2 != "":
sim2 = cf_df.loc[cf_df['text'] == text2, 'similarity'].iloc[0]
st.write(text2)
probability2, sentiment2 = eval_pred(text2, return_all=True)
nat_lang_explanation = construct_nlexp(text2,sentiment2,probability2)
#st.info(f" Similarity Score: {np.round(sim2, 2)}, Num Checked: {len(cf_df)}") #for QA purposes
with col3:
if text3 != "":
sim3 = cf_df.loc[cf_df['text'] == text3, 'similarity'].iloc[0]
st.write(text3)
probability3, sentiment3 = eval_pred(text3, return_all=True)
nat_lang_explanation = construct_nlexp(text3,sentiment3,probability3)
#st.info(f"Similarity Score: {np.round(sim3, 2)}, Num Checked: {len(cf_df)}") #for QA purposes
if layout == 'MultiNLC + Lime':
with col1:
#Use spaCy to make the sentence into a doc so we can do NLP.
doc = nlp(st.session_state.input)
#Evaluate the provided sentence for sentiment and probability.
if st.session_state.input != "":
st.caption("This is the sentence you provided.")
st.write(text)
probability, sentiment = eval_pred(text, return_all=True)
options, lime = critical_words(st.session_state.input,options=True)
nat_lang_explanation = construct_nlexp(text,sentiment,probability)
st.write(" ")
st.altair_chart(lime_viz(lime))
#Allow the user to pick an option to generate counterfactuals from.
option = st.radio('Which word would you like to use to generate alternatives?', options, key = "option")
lc_option = option.lower()
if (any(lc_option in sublist for sublist in word_lists)):
st.write(f'You selected {option}. It matches a list.')
elif option:
st.write(f'You selected {option}. It does not match a list.')
definition = get_def(option)
else:
st.write('Awaiting your selection.')
if st.button('Generate Alternatives'):
if lc_option in word_lists[0]:
cf_df = gen_cf_country(countries, doc, option)
st.success('Alternatives created.')
elif lc_option in word_lists[1]:
cf_df = gen_cf_profession(professions, doc, option)
st.success('Alternatives created.')
else:
with st.sidebar:
ant("Generating alternatives for",(option,"opt","#E0FBFB"), "with a definition of: ",(st.session_state.definition,"def","#E0FBFB"),".")
cf_df = cf_from_wordnet_df(option,text,seed_definition=st.session_state.definition)
st.success('Alternatives created.')
if len(cf_df) != 0:
if alt_choice == "Similarity":
text2, text3 = get_min_max(cf_df, option)
col2.caption(f"This sentence is 'similar' to {option}.")
col3.caption(f"This sentence is 'not similar' to {option}.")
elif alt_choice == "Sampling (Random)":
text2, text3 = sampled_alts(cf_df, option)
col2.caption(f"This sentence is a random sample from the alternatives.")
col3.caption(f"This sentence is a random sample from the alternatives.")
elif alt_choice == "Sampling (Fixed)":
text2, text3 = sampled_alts(cf_df, option, fixed=True)
col2.caption(f"This sentence is a fixed sample of the alternatives.")
col3.caption(f"This sentence is a fixed sample of the alternatives.")
elif alt_choice == "Probability":
text2, text3 = abs_dif(cf_df, option)
col2.caption(f"This sentence is the closest prediction in the model.")
col3.caption(f"This sentence is the farthest prediction in the model.")
with st.sidebar:
st.info(f"Alternatives generated: {len(cf_df)}")
with col2:
if text2 != "":
sim2 = cf_df.loc[cf_df['text'] == text2, 'similarity'].iloc[0]
st.write(text2)
probability2, sentiment2 = eval_pred(text2, return_all=True)
nat_lang_explanation = construct_nlexp(text2,sentiment2,probability2)
exp2 = explainer.explain_instance(text2, predictor, num_features=15, num_samples=2000)
lime_results2 = exp2.as_list()
st.write(" ")
st.altair_chart(lime_viz(lime_results2))
with col3:
if text3 != "":
sim3 = cf_df.loc[cf_df['text'] == text3, 'similarity'].iloc[0]
st.write(text3)
probability3, sentiment3 = eval_pred(text3, return_all=True)
nat_lang_explanation = construct_nlexp(text3,sentiment3,probability3)
exp3 = explainer.explain_instance(text3, predictor, num_features=15, num_samples=2000)
lime_results3 = exp3.as_list()
st.write(" ")
st.altair_chart(lime_viz(lime_results3))
if layout == 'VizNLC':
with col1:
#Use spaCy to make the sentence into a doc so we can do NLP.
doc = nlp(st.session_state.input)
#Evaluate the provided sentence for sentiment and probability.
if st.session_state.input != "":
st.caption("This is the sentence you provided.")
st.write(text)
probability, sentiment = eval_pred(text, return_all=True)
options, lime = critical_words(st.session_state.input,options=True)
nat_lang_explanation = construct_nlexp(text,sentiment,probability)
st.write(" ")
st.altair_chart(lime_viz(lime))
#Allow the user to pick an option to generate counterfactuals from.
option = st.radio('Which word would you like to use to generate alternatives?', options, key = "option")
lc_option = option.lower()
if (any(lc_option in sublist for sublist in word_lists)):
st.write(f'You selected {option}. It matches a list.')
elif option:
st.write(f'You selected {option}. It does not match a list.')
definition = get_def(option)
else:
st.write('Awaiting your selection.')
if st.button('Generate Alternatives'):
if lc_option in word_lists[0]:
cf_df = gen_cf_country(countries, doc, option)
st.success('Alternatives created.')
elif lc_option in word_lists[1]:
cf_df = gen_cf_profession(professions, doc, option)
st.success('Alternatives created.')
else:
with st.sidebar:
ant("Generating alternatives for",(option,"opt","#E0FBFB"), "with a definition of: ",(st.session_state.definition,"def","#E0FBFB"),".")
cf_df = cf_from_wordnet_df(option,text,seed_definition=st.session_state.definition)
st.success('Alternatives created.')
if len(cf_df) != 0:
if alt_choice == "Similarity":
text2, text3 = get_min_max(cf_df, option)
col2.caption(f"This sentence is 'similar' to {option}.")
col3.caption(f"This sentence is 'not similar' to {option}.")
elif alt_choice == "Sampling (Random)":
text2, text3 = sampled_alts(cf_df, option)
col2.caption(f"This sentence is a random sample from the alternatives.")
col3.caption(f"This sentence is a random sample from the alternatives.")
elif alt_choice == "Sampling (Fixed)":
text2, text3 = sampled_alts(cf_df, option, fixed=True)
col2.caption(f"This sentence is a fixed sample of the alternatives.")
col3.caption(f"This sentence is a fixed sample of the alternatives.")
elif alt_choice == "Probability":
text2, text3 = abs_dif(cf_df, option)
col2.caption(f"This sentence is the closest prediction in the model.")
col3.caption(f"This graph represents the {len(cf_df)} alternatives to {option}.")
with st.sidebar:
st.info(f"Alternatives generated: {len(cf_df)}")
with col2:
if text2 != "":
sim2 = cf_df.loc[cf_df['text'] == text2, 'similarity'].iloc[0]
st.write(text2)
probability2, sentiment2 = eval_pred(text2, return_all=True)
nat_lang_explanation = construct_nlexp(text2,sentiment2,probability2)
exp2 = explainer.explain_instance(text2, predictor, num_features=15, num_samples=2000)
lime_results2 = exp2.as_list()
st.write(" ")
st.altair_chart(lime_viz(lime_results2))
with col3:
if not cf_df.empty:
single_nearest = alt.selection_single(on='mouseover', nearest=True)
full = alt.Chart(cf_df).encode(
alt.X('similarity:Q', scale=alt.Scale(zero=False)),
alt.Y('pred:Q'),
color=alt.Color('Categories:N', legend=alt.Legend(title="Color of Categories")),
size=alt.Size('seed:O'),
tooltip=('Categories','text','pred')
).mark_circle(opacity=.5).properties(width=450, height=450).add_selection(single_nearest)
st.altair_chart(full)
|