Nathan Butters commited on
Commit
b0fc967
·
1 Parent(s): df8c6e1

cleaning spacy

Browse files
.ipynb_checkpoints/NLselector-checkpoint.py CHANGED
@@ -2,7 +2,7 @@
2
  import pandas as pd, spacy, nltk, numpy as np, re
3
  from spacy.matcher import Matcher
4
  #!python -m spacy download en_core_web_md #Not sure if we need this so I'm going to keep it just in case
5
- nlp = spacy.load("Assets/Models/en_core_web_lg")
6
  import altair as alt
7
  import streamlit as st
8
  from annotated_text import annotated_text as ant
 
2
  import pandas as pd, spacy, nltk, numpy as np, re
3
  from spacy.matcher import Matcher
4
  #!python -m spacy download en_core_web_md #Not sure if we need this so I'm going to keep it just in case
5
+ nlp = spacy.load("en_core_web_lg")
6
  import altair as alt
7
  import streamlit as st
8
  from annotated_text import annotated_text as ant
.ipynb_checkpoints/WNgen-checkpoint.py CHANGED
@@ -2,7 +2,7 @@
2
  import re, nltk, pandas as pd, numpy as np, ssl, streamlit as st
3
  from nltk.corpus import wordnet
4
  import spacy
5
- nlp = spacy.load("Assets/Models/en_core_web_lg")
6
 
7
  #Import necessary parts for predicting things.
8
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
 
2
  import re, nltk, pandas as pd, numpy as np, ssl, streamlit as st
3
  from nltk.corpus import wordnet
4
  import spacy
5
+ nlp = spacy.load("en_core_web_lg")
6
 
7
  #Import necessary parts for predicting things.
8
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
.ipynb_checkpoints/app-checkpoint.py CHANGED
@@ -1,7 +1,7 @@
1
  #Import the libraries we know we'll need for the Generator.
2
  import pandas as pd, spacy, nltk, numpy as np
3
  from spacy.matcher import Matcher
4
- nlp = spacy.load("Assets/Models/en_core_web_lg")
5
 
6
  #Import the libraries to support the model and predictions.
7
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
 
1
  #Import the libraries we know we'll need for the Generator.
2
  import pandas as pd, spacy, nltk, numpy as np
3
  from spacy.matcher import Matcher
4
+ nlp = spacy.load("en_core_web_lg")
5
 
6
  #Import the libraries to support the model and predictions.
7
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
Assets/VizNLC-Wireframe-example.png DELETED
Binary file (794 kB)
 
Assets/VizNLC-wireframe.png DELETED
Binary file (834 kB)
 
NLselector.py CHANGED
@@ -2,7 +2,7 @@
2
  import pandas as pd, spacy, nltk, numpy as np, re
3
  from spacy.matcher import Matcher
4
  #!python -m spacy download en_core_web_md #Not sure if we need this so I'm going to keep it just in case
5
- nlp = spacy.load("Assets/Models/en_core_web_lg")
6
  import altair as alt
7
  import streamlit as st
8
  from annotated_text import annotated_text as ant
 
2
  import pandas as pd, spacy, nltk, numpy as np, re
3
  from spacy.matcher import Matcher
4
  #!python -m spacy download en_core_web_md #Not sure if we need this so I'm going to keep it just in case
5
+ nlp = spacy.load("en_core_web_lg")
6
  import altair as alt
7
  import streamlit as st
8
  from annotated_text import annotated_text as ant
WNgen.py CHANGED
@@ -2,7 +2,7 @@
2
  import re, nltk, pandas as pd, numpy as np, ssl, streamlit as st
3
  from nltk.corpus import wordnet
4
  import spacy
5
- nlp = spacy.load("Assets/Models/en_core_web_lg")
6
 
7
  #Import necessary parts for predicting things.
8
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
 
2
  import re, nltk, pandas as pd, numpy as np, ssl, streamlit as st
3
  from nltk.corpus import wordnet
4
  import spacy
5
+ nlp = spacy.load("en_core_web_lg")
6
 
7
  #Import necessary parts for predicting things.
8
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
app.py CHANGED
@@ -1,7 +1,7 @@
1
  #Import the libraries we know we'll need for the Generator.
2
  import pandas as pd, spacy, nltk, numpy as np
3
  from spacy.matcher import Matcher
4
- nlp = spacy.load("Assets/Models/en_core_web_lg")
5
 
6
  #Import the libraries to support the model and predictions.
7
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
 
1
  #Import the libraries we know we'll need for the Generator.
2
  import pandas as pd, spacy, nltk, numpy as np
3
  from spacy.matcher import Matcher
4
+ nlp = spacy.load("en_core_web_lg")
5
 
6
  #Import the libraries to support the model and predictions.
7
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline