Spaces:
Running
Running
Nathan Butters
commited on
Commit
·
bdb6cd4
1
Parent(s):
9d6f821
abs_diff attempt 0
Browse files- .DS_Store +0 -0
- .ipynb_checkpoints/NLselector-checkpoint.py +37 -13
- Assets/.DS_Store +0 -0
- NLselector.py +1 -1
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
.ipynb_checkpoints/NLselector-checkpoint.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
#Import the libraries we know we'll need for the Generator.
|
2 |
import pandas as pd, spacy, nltk, numpy as np, re
|
3 |
from spacy.matcher import Matcher
|
4 |
-
#!python -m spacy download en_core_web_md #Not sure if we need this so I'm going to keep it just in case
|
5 |
nlp = spacy.load("en_core_web_lg")
|
6 |
import altair as alt
|
7 |
import streamlit as st
|
@@ -14,6 +13,9 @@ import torch
|
|
14 |
import torch.nn.functional as F
|
15 |
from lime.lime_text import LimeTextExplainer
|
16 |
|
|
|
|
|
|
|
17 |
class_names = ['negative', 'positive']
|
18 |
explainer = LimeTextExplainer(class_names=class_names)
|
19 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
@@ -27,6 +29,10 @@ def predictor(texts):
|
|
27 |
|
28 |
@st.experimental_singleton
|
29 |
def critical_words(document, options=False):
|
|
|
|
|
|
|
|
|
30 |
if type(document) is not spacy.tokens.doc.Doc:
|
31 |
document = nlp(document)
|
32 |
chunks = list(document.noun_chunks)
|
@@ -43,6 +49,31 @@ def critical_words(document, options=False):
|
|
43 |
lime_results = pd.DataFrame(lime_results, columns=["Word","Weight"])
|
44 |
|
45 |
#Identify what we care about "parts of speech"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
for chunk in chunks:
|
47 |
#The use of chunk[-1] is due to testing that it appears to always match the root
|
48 |
root = chunk[-1]
|
@@ -58,7 +89,7 @@ def critical_words(document, options=False):
|
|
58 |
#creates a span for the entirety of the compound noun and adds it to the list.
|
59 |
span = -1 * (1 + len(compound))
|
60 |
pos_options.append(chunk[span:].text)
|
61 |
-
cur_values + [token.text for token in chunk if token.pos_
|
62 |
else:
|
63 |
print(f"The elmenents in {compound} could not be added to the final list because they are not all relevant to the model.")
|
64 |
else:
|
@@ -67,21 +98,14 @@ def critical_words(document, options=False):
|
|
67 |
pos_options.extend(cur_values)
|
68 |
print(f"From {chunk.text}, {cur_values} added to pos_options due to entity recognition.") #for QA
|
69 |
elif len(chunk) >= 1:
|
70 |
-
cur_values = [token.text for token in chunk if token.pos_ in ["NOUN","ADJ"]]
|
71 |
if (all(elem in lime_options for elem in cur_values) and (options is True)) or ((options is False)):
|
72 |
pos_options.extend(cur_values)
|
73 |
print(f"From {chunk.text}, {cur_values} added to pos_options due to wildcard.") #for QA
|
74 |
else:
|
75 |
print(f"No options added for \'{chunk.text}\' ")
|
76 |
-
|
77 |
-
|
78 |
-
if (token.text not in pos_options) and ((token.text in lime_options) or (options == False)):
|
79 |
-
#print(f"executed {token.text} with {token.pos_} and {token.dep_}") #QA
|
80 |
-
if (token.pos_ == "ADJ") and (token.dep_ in ["acomp","conj"]):
|
81 |
-
pos_options.append(token.text)
|
82 |
-
elif (token.pos_ == "PRON") and (len(token.morph) !=0):
|
83 |
-
if (token.morph.get("PronType") == "Prs"):
|
84 |
-
pos_options.append(token.text)
|
85 |
|
86 |
if options:
|
87 |
return pos_options, lime_results
|
@@ -157,6 +181,7 @@ def abs_dif(df,seed):
|
|
157 |
|
158 |
text2 = Nearest Prediction
|
159 |
text3 = Farthest Prediction'''
|
|
|
160 |
target = df[df['Words'] == seed].pred.iloc[0]
|
161 |
sub_df = df[df['Words'] != seed].reset_index()
|
162 |
nearest_prediction = sub_df.pred[(sub_df.pred-target).abs().argsort()[:1]]
|
@@ -186,7 +211,6 @@ def gen_cf_country(df,_document,selection):
|
|
186 |
df['similarity'] = df.Words.apply(lambda x: nlp(selection).similarity(nlp(x)))
|
187 |
return df
|
188 |
|
189 |
-
|
190 |
def gen_cf_profession(df,_document,selection):
|
191 |
category = df.loc[df['Words'] == selection, 'Major'].iloc[0]
|
192 |
df = df[df.Major == category]
|
|
|
1 |
#Import the libraries we know we'll need for the Generator.
|
2 |
import pandas as pd, spacy, nltk, numpy as np, re
|
3 |
from spacy.matcher import Matcher
|
|
|
4 |
nlp = spacy.load("en_core_web_lg")
|
5 |
import altair as alt
|
6 |
import streamlit as st
|
|
|
13 |
import torch.nn.functional as F
|
14 |
from lime.lime_text import LimeTextExplainer
|
15 |
|
16 |
+
#Import WNgen.py
|
17 |
+
from WNgen import *
|
18 |
+
|
19 |
class_names = ['negative', 'positive']
|
20 |
explainer = LimeTextExplainer(class_names=class_names)
|
21 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
|
|
29 |
|
30 |
@st.experimental_singleton
|
31 |
def critical_words(document, options=False):
|
32 |
+
'''This function is meant to select the critical part of a sentence. Critical, in this context means
|
33 |
+
the part of the sentence that is either: A) a NOUN or PROPN from the correct entity group, B) a NOUN,
|
34 |
+
C) a NOUN + ADJ combination, or D) ADJ and PROPN used to modify other NOUN tokens.
|
35 |
+
It also checks this against what the model thinks is important if the user defines "options" as "LIME" or True.'''
|
36 |
if type(document) is not spacy.tokens.doc.Doc:
|
37 |
document = nlp(document)
|
38 |
chunks = list(document.noun_chunks)
|
|
|
49 |
lime_results = pd.DataFrame(lime_results, columns=["Word","Weight"])
|
50 |
|
51 |
#Identify what we care about "parts of speech"
|
52 |
+
|
53 |
+
# Here I am going to try to pick up pronouns, which are people, and Adjectival Compliments.
|
54 |
+
for token in document:
|
55 |
+
if (token.text not in pos_options) and ((token.text in lime_options) or (options == False)):
|
56 |
+
#print(f"executed {token.text} with {token.pos_} and {token.dep_}") #QA
|
57 |
+
if (token.pos_ in ["ADJ","PROPN"]) and (token.dep_ in ["compound", "amod"]) and (document[token.i - 1].dep_ in ["compound", "amod"]):
|
58 |
+
compound = document[token.i - 1: token.i +1].text
|
59 |
+
pos_options.append(compound)
|
60 |
+
print(f'Added {compound} based on "amod" and "compound" adjectives.')
|
61 |
+
elif (token.pos_ in ["NOUN"]) and (token.dep_ in ["compound", "amod", "conj"]) and (document[token.i - 1].dep_ in ["compound"]):
|
62 |
+
compound = document[token.i - 1: token.i +1].text
|
63 |
+
pos_options.append(compound)
|
64 |
+
print(f'Added {compound} based on "amod" and "compound" and "conj" nouns.')
|
65 |
+
elif (token.pos_ == "PROPN") and (token.dep_ in ["prep","amod"]):
|
66 |
+
pos_options.append(token.text)
|
67 |
+
print(f"Added '{token.text}' based on their adjectival state.")
|
68 |
+
elif (token.pos_ == "ADJ") and (token.dep_ in ["acomp","conj","amod"]):
|
69 |
+
pos_options.append(token.text)
|
70 |
+
print(f"Added '{token.text}' based on their adjectival state.")
|
71 |
+
elif (token.pos_ == "PRON") and (len(token.morph) !=0):
|
72 |
+
if (token.morph.get("PronType") == "Prs"):
|
73 |
+
pos_options.append(token.text)
|
74 |
+
print(f"Added '{token.text}' because it's a human pronoun.")
|
75 |
+
|
76 |
+
#Noun Chunks parsing
|
77 |
for chunk in chunks:
|
78 |
#The use of chunk[-1] is due to testing that it appears to always match the root
|
79 |
root = chunk[-1]
|
|
|
89 |
#creates a span for the entirety of the compound noun and adds it to the list.
|
90 |
span = -1 * (1 + len(compound))
|
91 |
pos_options.append(chunk[span:].text)
|
92 |
+
cur_values + [token.text for token in chunk if token.pos_ in ["ADJ","NOUN","PROPN"]]
|
93 |
else:
|
94 |
print(f"The elmenents in {compound} could not be added to the final list because they are not all relevant to the model.")
|
95 |
else:
|
|
|
98 |
pos_options.extend(cur_values)
|
99 |
print(f"From {chunk.text}, {cur_values} added to pos_options due to entity recognition.") #for QA
|
100 |
elif len(chunk) >= 1:
|
101 |
+
cur_values = [token.text for token in chunk if token.pos_ in ["NOUN","ADJ","PROPN"]]
|
102 |
if (all(elem in lime_options for elem in cur_values) and (options is True)) or ((options is False)):
|
103 |
pos_options.extend(cur_values)
|
104 |
print(f"From {chunk.text}, {cur_values} added to pos_options due to wildcard.") #for QA
|
105 |
else:
|
106 |
print(f"No options added for \'{chunk.text}\' ")
|
107 |
+
|
108 |
+
pos_options = list(set(pos_options))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
if options:
|
111 |
return pos_options, lime_results
|
|
|
181 |
|
182 |
text2 = Nearest Prediction
|
183 |
text3 = Farthest Prediction'''
|
184 |
+
#seed = process_text(seed)
|
185 |
target = df[df['Words'] == seed].pred.iloc[0]
|
186 |
sub_df = df[df['Words'] != seed].reset_index()
|
187 |
nearest_prediction = sub_df.pred[(sub_df.pred-target).abs().argsort()[:1]]
|
|
|
211 |
df['similarity'] = df.Words.apply(lambda x: nlp(selection).similarity(nlp(x)))
|
212 |
return df
|
213 |
|
|
|
214 |
def gen_cf_profession(df,_document,selection):
|
215 |
category = df.loc[df['Words'] == selection, 'Major'].iloc[0]
|
216 |
df = df[df.Major == category]
|
Assets/.DS_Store
CHANGED
Binary files a/Assets/.DS_Store and b/Assets/.DS_Store differ
|
|
NLselector.py
CHANGED
@@ -181,7 +181,7 @@ def abs_dif(df,seed):
|
|
181 |
|
182 |
text2 = Nearest Prediction
|
183 |
text3 = Farthest Prediction'''
|
184 |
-
seed = process_text(seed)
|
185 |
target = df[df['Words'] == seed].pred.iloc[0]
|
186 |
sub_df = df[df['Words'] != seed].reset_index()
|
187 |
nearest_prediction = sub_df.pred[(sub_df.pred-target).abs().argsort()[:1]]
|
|
|
181 |
|
182 |
text2 = Nearest Prediction
|
183 |
text3 = Farthest Prediction'''
|
184 |
+
#seed = process_text(seed)
|
185 |
target = df[df['Words'] == seed].pred.iloc[0]
|
186 |
sub_df = df[df['Words'] != seed].reset_index()
|
187 |
nearest_prediction = sub_df.pred[(sub_df.pred-target).abs().argsort()[:1]]
|