Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import numpy as np | |
from functools import partial | |
import kornia | |
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test | |
from ldm.util import default | |
import clip | |
class AbstractEncoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def encode(self, *args, **kwargs): | |
raise NotImplementedError | |
class IdentityEncoder(AbstractEncoder): | |
def encode(self, x): | |
return x | |
class FaceClipEncoder(AbstractEncoder): | |
def __init__(self, augment=True, retreival_key=None): | |
super().__init__() | |
self.encoder = FrozenCLIPImageEmbedder() | |
self.augment = augment | |
self.retreival_key = retreival_key | |
def forward(self, img): | |
encodings = [] | |
with torch.no_grad(): | |
x_offset = 125 | |
if self.retreival_key: | |
# Assumes retrieved image are packed into the second half of channels | |
face = img[:,3:,190:440,x_offset:(512-x_offset)] | |
other = img[:,:3,...].clone() | |
else: | |
face = img[:,:,190:440,x_offset:(512-x_offset)] | |
other = img.clone() | |
if self.augment: | |
face = K.RandomHorizontalFlip()(face) | |
other[:,:,190:440,x_offset:(512-x_offset)] *= 0 | |
encodings = [ | |
self.encoder.encode(face), | |
self.encoder.encode(other), | |
] | |
return torch.cat(encodings, dim=1) | |
def encode(self, img): | |
if isinstance(img, list): | |
# Uncondition | |
return torch.zeros((1, 2, 768), device=self.encoder.model.visual.conv1.weight.device) | |
return self(img) | |
class FaceIdClipEncoder(AbstractEncoder): | |
def __init__(self): | |
super().__init__() | |
self.encoder = FrozenCLIPImageEmbedder() | |
for p in self.encoder.parameters(): | |
p.requires_grad = False | |
self.id = FrozenFaceEncoder("/home/jpinkney/code/stable-diffusion/model_ir_se50.pth", augment=True) | |
def forward(self, img): | |
encodings = [] | |
with torch.no_grad(): | |
face = kornia.geometry.resize(img, (256, 256), | |
interpolation='bilinear', align_corners=True) | |
other = img.clone() | |
other[:,:,184:452,122:396] *= 0 | |
encodings = [ | |
self.id.encode(face), | |
self.encoder.encode(other), | |
] | |
return torch.cat(encodings, dim=1) | |
def encode(self, img): | |
if isinstance(img, list): | |
# Uncondition | |
return torch.zeros((1, 2, 768), device=self.encoder.model.visual.conv1.weight.device) | |
return self(img) | |
class ClassEmbedder(nn.Module): | |
def __init__(self, embed_dim, n_classes=1000, key='class'): | |
super().__init__() | |
self.key = key | |
self.embedding = nn.Embedding(n_classes, embed_dim) | |
def forward(self, batch, key=None): | |
if key is None: | |
key = self.key | |
# this is for use in crossattn | |
c = batch[key][:, None] | |
c = self.embedding(c) | |
return c | |
class TransformerEmbedder(AbstractEncoder): | |
"""Some transformer encoder layers""" | |
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"): | |
super().__init__() | |
self.device = device | |
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, | |
attn_layers=Encoder(dim=n_embed, depth=n_layer)) | |
def forward(self, tokens): | |
tokens = tokens.to(self.device) # meh | |
z = self.transformer(tokens, return_embeddings=True) | |
return z | |
def encode(self, x): | |
return self(x) | |
class BERTTokenizer(AbstractEncoder): | |
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" | |
def __init__(self, device="cuda", vq_interface=True, max_length=77): | |
super().__init__() | |
from transformers import BertTokenizerFast # TODO: add to reuquirements | |
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") | |
self.device = device | |
self.vq_interface = vq_interface | |
self.max_length = max_length | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
return tokens | |
def encode(self, text): | |
tokens = self(text) | |
if not self.vq_interface: | |
return tokens | |
return None, None, [None, None, tokens] | |
def decode(self, text): | |
return text | |
class BERTEmbedder(AbstractEncoder): | |
"""Uses the BERT tokenizr model and add some transformer encoder layers""" | |
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, | |
device="cuda",use_tokenizer=True, embedding_dropout=0.0): | |
super().__init__() | |
self.use_tknz_fn = use_tokenizer | |
if self.use_tknz_fn: | |
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) | |
self.device = device | |
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, | |
attn_layers=Encoder(dim=n_embed, depth=n_layer), | |
emb_dropout=embedding_dropout) | |
def forward(self, text): | |
if self.use_tknz_fn: | |
tokens = self.tknz_fn(text)#.to(self.device) | |
else: | |
tokens = text | |
z = self.transformer(tokens, return_embeddings=True) | |
return z | |
def encode(self, text): | |
# output of length 77 | |
return self(text) | |
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
class FrozenT5Embedder(AbstractEncoder): | |
"""Uses the T5 transformer encoder for text""" | |
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl | |
super().__init__() | |
self.tokenizer = T5Tokenizer.from_pretrained(version, cache_dir='/apdcephfs/private_rondyliu/projects/huggingface_models') | |
self.transformer = T5EncoderModel.from_pretrained(version, cache_dir='/apdcephfs/private_rondyliu/projects/huggingface_models') | |
self.device = device | |
self.max_length = max_length # TODO: typical value? | |
self.freeze() | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
#self.train = disabled_train | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.transformer(input_ids=tokens) | |
z = outputs.last_hidden_state | |
return z | |
def encode(self, text): | |
return self(text) | |
from ldm.thirdp.psp.id_loss import IDFeatures | |
import kornia.augmentation as K | |
class FrozenFaceEncoder(AbstractEncoder): | |
def __init__(self, model_path, augment=False): | |
super().__init__() | |
self.loss_fn = IDFeatures(model_path) | |
# face encoder is frozen | |
for p in self.loss_fn.parameters(): | |
p.requires_grad = False | |
# Mapper is trainable | |
self.mapper = torch.nn.Linear(512, 768) | |
p = 0.25 | |
if augment: | |
self.augment = K.AugmentationSequential( | |
K.RandomHorizontalFlip(p=0.5), | |
K.RandomEqualize(p=p), | |
# K.RandomPlanckianJitter(p=p), | |
# K.RandomPlasmaBrightness(p=p), | |
# K.RandomPlasmaContrast(p=p), | |
# K.ColorJiggle(0.02, 0.2, 0.2, p=p), | |
) | |
else: | |
self.augment = False | |
def forward(self, img): | |
if isinstance(img, list): | |
# Uncondition | |
return torch.zeros((1, 1, 768), device=self.mapper.weight.device) | |
if self.augment is not None: | |
# Transforms require 0-1 | |
img = self.augment((img + 1)/2) | |
img = 2*img - 1 | |
feat = self.loss_fn(img, crop=True) | |
feat = self.mapper(feat.unsqueeze(1)) | |
return feat | |
def encode(self, img): | |
return self(img) | |
class FrozenCLIPEmbedder(AbstractEncoder): | |
"""Uses the CLIP transformer encoder for text (from huggingface)""" | |
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32 | |
super().__init__() | |
self.tokenizer = CLIPTokenizer.from_pretrained(version, cache_dir='/apdcephfs/private_rondyliu/projects/huggingface_models') | |
self.transformer = CLIPTextModel.from_pretrained(version, cache_dir='/apdcephfs/private_rondyliu/projects/huggingface_models') | |
self.device = device | |
self.max_length = max_length # TODO: typical value? | |
self.freeze() | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
#self.train = disabled_train | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.transformer(input_ids=tokens) | |
z = outputs.last_hidden_state | |
return z | |
def encode(self, text): | |
return self(text) | |
import torch.nn.functional as F | |
from transformers import CLIPVisionModel | |
class ClipImageProjector(AbstractEncoder): | |
""" | |
Uses the CLIP image encoder. | |
""" | |
def __init__(self, version="openai/clip-vit-large-patch14", max_length=77): # clip-vit-base-patch32 | |
super().__init__() | |
self.model = CLIPVisionModel.from_pretrained(version) | |
self.model.train() | |
self.max_length = max_length # TODO: typical value? | |
self.antialias = True | |
self.mapper = torch.nn.Linear(1024, 768) | |
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) | |
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) | |
null_cond = self.get_null_cond(version, max_length) | |
self.register_buffer('null_cond', null_cond) | |
def get_null_cond(self, version, max_length): | |
device = self.mean.device | |
embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length) | |
null_cond = embedder([""]) | |
return null_cond | |
def preprocess(self, x): | |
# Expects inputs in the range -1, 1 | |
x = kornia.geometry.resize(x, (224, 224), | |
interpolation='bicubic',align_corners=True, | |
antialias=self.antialias) | |
x = (x + 1.) / 2. | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, self.mean, self.std) | |
return x | |
def forward(self, x): | |
if isinstance(x, list): | |
return self.null_cond | |
# x is assumed to be in range [-1,1] | |
x = self.preprocess(x) | |
outputs = self.model(pixel_values=x) | |
last_hidden_state = outputs.last_hidden_state | |
last_hidden_state = self.mapper(last_hidden_state) | |
return F.pad(last_hidden_state, [0,0, 0,self.max_length-last_hidden_state.shape[1], 0,0]) | |
def encode(self, im): | |
return self(im) | |
class ProjectedFrozenCLIPEmbedder(AbstractEncoder): | |
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32 | |
super().__init__() | |
self.embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length) | |
self.projection = torch.nn.Linear(768, 768) | |
def forward(self, text): | |
z = self.embedder(text) | |
return self.projection(z) | |
def encode(self, text): | |
return self(text) | |
class FrozenCLIPImageEmbedder(AbstractEncoder): | |
""" | |
Uses the CLIP image encoder. | |
Not actually frozen... If you want that set cond_stage_trainable=False in cfg | |
""" | |
def __init__( | |
self, | |
model='ViT-L/14', | |
jit=False, | |
device='cpu', | |
antialias=False, | |
): | |
super().__init__() | |
self.model, _ = clip.load(name=model, device=device, jit=jit) | |
# We don't use the text part so delete it | |
del self.model.transformer | |
self.antialias = antialias | |
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) | |
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) | |
def preprocess(self, x): | |
# Expects inputs in the range -1, 1 | |
x = kornia.geometry.resize(x, (224, 224), | |
interpolation='bicubic',align_corners=True, | |
antialias=self.antialias) | |
x = (x + 1.) / 2. | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, self.mean, self.std) | |
return x | |
def forward(self, x): | |
# x is assumed to be in range [-1,1] | |
if isinstance(x, list): | |
# [""] denotes condition dropout for ucg | |
device = self.model.visual.conv1.weight.device | |
return torch.zeros(1, 768, device=device) | |
return self.model.encode_image(self.preprocess(x)).float() | |
def encode(self, im): | |
return self(im).unsqueeze(1) | |
from torchvision import transforms | |
import random | |
class FrozenCLIPImageMutliEmbedder(AbstractEncoder): | |
""" | |
Uses the CLIP image encoder. | |
Not actually frozen... If you want that set cond_stage_trainable=False in cfg | |
""" | |
def __init__( | |
self, | |
model='ViT-L/14', | |
jit=False, | |
device='cpu', | |
antialias=True, | |
max_crops=5, | |
): | |
super().__init__() | |
self.model, _ = clip.load(name=model, device=device, jit=jit) | |
# We don't use the text part so delete it | |
del self.model.transformer | |
self.antialias = antialias | |
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) | |
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) | |
self.max_crops = max_crops | |
def preprocess(self, x): | |
# Expects inputs in the range -1, 1 | |
randcrop = transforms.RandomResizedCrop(224, scale=(0.085, 1.0), ratio=(1,1)) | |
max_crops = self.max_crops | |
patches = [] | |
crops = [randcrop(x) for _ in range(max_crops)] | |
patches.extend(crops) | |
x = torch.cat(patches, dim=0) | |
x = (x + 1.) / 2. | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, self.mean, self.std) | |
return x | |
def forward(self, x): | |
# x is assumed to be in range [-1,1] | |
if isinstance(x, list): | |
# [""] denotes condition dropout for ucg | |
device = self.model.visual.conv1.weight.device | |
return torch.zeros(1, self.max_crops, 768, device=device) | |
batch_tokens = [] | |
for im in x: | |
patches = self.preprocess(im.unsqueeze(0)) | |
tokens = self.model.encode_image(patches).float() | |
for t in tokens: | |
if random.random() < 0.1: | |
t *= 0 | |
batch_tokens.append(tokens.unsqueeze(0)) | |
return torch.cat(batch_tokens, dim=0) | |
def encode(self, im): | |
return self(im) | |
class SpatialRescaler(nn.Module): | |
def __init__(self, | |
n_stages=1, | |
method='bilinear', | |
multiplier=0.5, | |
in_channels=3, | |
out_channels=None, | |
bias=False): | |
super().__init__() | |
self.n_stages = n_stages | |
assert self.n_stages >= 0 | |
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area'] | |
self.multiplier = multiplier | |
self.interpolator = partial(torch.nn.functional.interpolate, mode=method) | |
self.remap_output = out_channels is not None | |
if self.remap_output: | |
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.') | |
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias) | |
def forward(self,x): | |
for stage in range(self.n_stages): | |
x = self.interpolator(x, scale_factor=self.multiplier) | |
if self.remap_output: | |
x = self.channel_mapper(x) | |
return x | |
def encode(self, x): | |
return self(x) | |
from ldm.util import instantiate_from_config | |
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like | |
class LowScaleEncoder(nn.Module): | |
def __init__(self, model_config, linear_start, linear_end, timesteps=1000, max_noise_level=250, output_size=64, | |
scale_factor=1.0): | |
super().__init__() | |
self.max_noise_level = max_noise_level | |
self.model = instantiate_from_config(model_config) | |
self.augmentation_schedule = self.register_schedule(timesteps=timesteps, linear_start=linear_start, | |
linear_end=linear_end) | |
self.out_size = output_size | |
self.scale_factor = scale_factor | |
def register_schedule(self, beta_schedule="linear", timesteps=1000, | |
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): | |
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, | |
cosine_s=cosine_s) | |
alphas = 1. - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) | |
timesteps, = betas.shape | |
self.num_timesteps = int(timesteps) | |
self.linear_start = linear_start | |
self.linear_end = linear_end | |
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' | |
to_torch = partial(torch.tensor, dtype=torch.float32) | |
self.register_buffer('betas', to_torch(betas)) | |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) | |
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) | |
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) | |
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) | |
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) | |
def q_sample(self, x_start, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + | |
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) | |
def forward(self, x): | |
z = self.model.encode(x).sample() | |
z = z * self.scale_factor | |
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long() | |
z = self.q_sample(z, noise_level) | |
if self.out_size is not None: | |
z = torch.nn.functional.interpolate(z, size=self.out_size, mode="nearest") # TODO: experiment with mode | |
# z = z.repeat_interleave(2, -2).repeat_interleave(2, -1) | |
return z, noise_level | |
def decode(self, z): | |
z = z / self.scale_factor | |
return self.model.decode(z) | |
if __name__ == "__main__": | |
from ldm.util import count_params | |
sentences = ["a hedgehog drinking a whiskey", "der mond ist aufgegangen", "Ein Satz mit vielen Sonderzeichen: äöü ß ?! : 'xx-y/@s'"] | |
model = FrozenT5Embedder(version="google/t5-v1_1-xl").cuda() | |
count_params(model, True) | |
z = model(sentences) | |
print(z.shape) | |
model = FrozenCLIPEmbedder().cuda() | |
count_params(model, True) | |
z = model(sentences) | |
print(z.shape) | |
print("done.") | |