HarmonyView / ldm /data /simple.py
byeongjun-park's picture
error resolve
fe3e74d
from typing import Dict
import webdataset as wds
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
import torchvision
from einops import rearrange
from ldm.util import instantiate_from_config
from datasets import load_dataset
import pytorch_lightning as pl
import copy
import csv
import cv2
import random
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
import json
import os
import webdataset as wds
import math
from torch.utils.data.distributed import DistributedSampler
# Some hacky things to make experimentation easier
def make_transform_multi_folder_data(paths, caption_files=None, **kwargs):
ds = make_multi_folder_data(paths, caption_files, **kwargs)
return TransformDataset(ds)
def make_nfp_data(base_path):
dirs = list(Path(base_path).glob("*/"))
print(f"Found {len(dirs)} folders")
print(dirs)
tforms = [transforms.Resize(512), transforms.CenterCrop(512)]
datasets = [NfpDataset(x, image_transforms=copy.copy(tforms), default_caption="A view from a train window") for x in dirs]
return torch.utils.data.ConcatDataset(datasets)
class VideoDataset(Dataset):
def __init__(self, root_dir, image_transforms, caption_file, offset=8, n=2):
self.root_dir = Path(root_dir)
self.caption_file = caption_file
self.n = n
ext = "mp4"
self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
self.offset = offset
if isinstance(image_transforms, ListConfig):
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = transforms.Compose(image_transforms)
self.tform = image_transforms
with open(self.caption_file) as f:
reader = csv.reader(f)
rows = [row for row in reader]
self.captions = dict(rows)
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
for i in range(10):
try:
return self._load_sample(index)
except Exception:
# Not really good enough but...
print("uh oh")
def _load_sample(self, index):
n = self.n
filename = self.paths[index]
min_frame = 2*self.offset + 2
vid = cv2.VideoCapture(str(filename))
max_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
curr_frame_n = random.randint(min_frame, max_frames)
vid.set(cv2.CAP_PROP_POS_FRAMES,curr_frame_n)
_, curr_frame = vid.read()
prev_frames = []
for i in range(n):
prev_frame_n = curr_frame_n - (i+1)*self.offset
vid.set(cv2.CAP_PROP_POS_FRAMES,prev_frame_n)
_, prev_frame = vid.read()
prev_frame = self.tform(Image.fromarray(prev_frame[...,::-1]))
prev_frames.append(prev_frame)
vid.release()
caption = self.captions[filename.name]
data = {
"image": self.tform(Image.fromarray(curr_frame[...,::-1])),
"prev": torch.cat(prev_frames, dim=-1),
"txt": caption
}
return data
# end hacky things
def make_tranforms(image_transforms):
# if isinstance(image_transforms, ListConfig):
# image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms = []
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = transforms.Compose(image_transforms)
return image_transforms
def make_multi_folder_data(paths, caption_files=None, **kwargs):
"""Make a concat dataset from multiple folders
Don't suport captions yet
If paths is a list, that's ok, if it's a Dict interpret it as:
k=folder v=n_times to repeat that
"""
list_of_paths = []
if isinstance(paths, (Dict, DictConfig)):
assert caption_files is None, \
"Caption files not yet supported for repeats"
for folder_path, repeats in paths.items():
list_of_paths.extend([folder_path]*repeats)
paths = list_of_paths
if caption_files is not None:
datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
else:
datasets = [FolderData(p, **kwargs) for p in paths]
return torch.utils.data.ConcatDataset(datasets)
class NfpDataset(Dataset):
def __init__(self,
root_dir,
image_transforms=[],
ext="jpg",
default_caption="",
) -> None:
"""assume sequential frames and a deterministic transform"""
self.root_dir = Path(root_dir)
self.default_caption = default_caption
self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
self.tform = make_tranforms(image_transforms)
def __len__(self):
return len(self.paths) - 1
def __getitem__(self, index):
prev = self.paths[index]
curr = self.paths[index+1]
data = {}
data["image"] = self._load_im(curr)
data["prev"] = self._load_im(prev)
data["txt"] = self.default_caption
return data
def _load_im(self, filename):
im = Image.open(filename).convert("RGB")
return self.tform(im)
class ObjaverseDataModuleFromConfig(pl.LightningDataModule):
def __init__(self, root_dir, batch_size, total_view, train=None, validation=None,
test=None, num_workers=4, **kwargs):
super().__init__(self)
self.root_dir = root_dir
self.batch_size = batch_size
self.num_workers = num_workers
self.total_view = total_view
if train is not None:
dataset_config = train
if validation is not None:
dataset_config = validation
if 'image_transforms' in dataset_config:
image_transforms = [torchvision.transforms.Resize(dataset_config.image_transforms.size)]
else:
image_transforms = []
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
self.image_transforms = torchvision.transforms.Compose(image_transforms)
def train_dataloader(self):
dataset = ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=False, \
image_transforms=self.image_transforms)
sampler = DistributedSampler(dataset)
return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler)
def val_dataloader(self):
dataset = ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=True, \
image_transforms=self.image_transforms)
sampler = DistributedSampler(dataset)
return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
def test_dataloader(self):
return wds.WebLoader(ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=self.validation),\
batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
class ObjaverseData(Dataset):
def __init__(self,
root_dir='.objaverse/hf-objaverse-v1/views',
image_transforms=[],
ext="png",
default_trans=torch.zeros(3),
postprocess=None,
return_paths=False,
total_view=4,
validation=False
) -> None:
"""Create a dataset from a folder of images.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
self.root_dir = Path(root_dir)
self.default_trans = default_trans
self.return_paths = return_paths
if isinstance(postprocess, DictConfig):
postprocess = instantiate_from_config(postprocess)
self.postprocess = postprocess
self.total_view = total_view
if not isinstance(ext, (tuple, list, ListConfig)):
ext = [ext]
with open(os.path.join(root_dir, 'valid_paths.json')) as f:
self.paths = json.load(f)
total_objects = len(self.paths)
if validation:
self.paths = self.paths[math.floor(total_objects / 100. * 99.):] # used last 1% as validation
else:
self.paths = self.paths[:math.floor(total_objects / 100. * 99.)] # used first 99% as training
print('============= length of dataset %d =============' % len(self.paths))
self.tform = image_transforms
def __len__(self):
return len(self.paths)
def cartesian_to_spherical(self, xyz):
ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
xy = xyz[:,0]**2 + xyz[:,1]**2
z = np.sqrt(xy + xyz[:,2]**2)
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
return np.array([theta, azimuth, z])
def get_T(self, target_RT, cond_RT):
R, T = target_RT[:3, :3], target_RT[:, -1]
T_target = -R.T @ T
R, T = cond_RT[:3, :3], cond_RT[:, -1]
T_cond = -R.T @ T
theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :])
theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :])
d_theta = theta_target - theta_cond
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
d_z = z_target - z_cond
d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
return d_T
def load_im(self, path, color):
'''
replace background pixel with random color in rendering
'''
try:
img = plt.imread(path)
except:
print(path)
sys.exit()
img[img[:, :, -1] == 0.] = color
img = Image.fromarray(np.uint8(img[:, :, :3] * 255.))
return img
def __getitem__(self, index):
data = {}
if self.paths[index][-2:] == '_1': # dirty fix for rendering dataset twice
total_view = 8
else:
total_view = 4
index_target, index_cond = random.sample(range(total_view), 2) # without replacement
filename = os.path.join(self.root_dir, self.paths[index])
# print(self.paths[index])
if self.return_paths:
data["path"] = str(filename)
color = [1., 1., 1., 1.]
try:
target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color))
cond_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_cond), color))
target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target))
cond_RT = np.load(os.path.join(filename, '%03d.npy' % index_cond))
except:
# very hacky solution, sorry about this
filename = os.path.join(self.root_dir, '692db5f2d3a04bb286cb977a7dba903e_1') # this one we know is valid
target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color))
cond_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_cond), color))
target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target))
cond_RT = np.load(os.path.join(filename, '%03d.npy' % index_cond))
target_im = torch.zeros_like(target_im)
cond_im = torch.zeros_like(cond_im)
data["image_target"] = target_im
data["image_cond"] = cond_im
data["T"] = self.get_T(target_RT, cond_RT)
if self.postprocess is not None:
data = self.postprocess(data)
return data
def process_im(self, im):
im = im.convert("RGB")
return self.tform(im)
class FolderData(Dataset):
def __init__(self,
root_dir,
caption_file=None,
image_transforms=[],
ext="jpg",
default_caption="",
postprocess=None,
return_paths=False,
) -> None:
"""Create a dataset from a folder of images.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
self.root_dir = Path(root_dir)
self.default_caption = default_caption
self.return_paths = return_paths
if isinstance(postprocess, DictConfig):
postprocess = instantiate_from_config(postprocess)
self.postprocess = postprocess
if caption_file is not None:
with open(caption_file, "rt") as f:
ext = Path(caption_file).suffix.lower()
if ext == ".json":
captions = json.load(f)
elif ext == ".jsonl":
lines = f.readlines()
lines = [json.loads(x) for x in lines]
captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
else:
raise ValueError(f"Unrecognised format: {ext}")
self.captions = captions
else:
self.captions = None
if not isinstance(ext, (tuple, list, ListConfig)):
ext = [ext]
# Only used if there is no caption file
self.paths = []
for e in ext:
self.paths.extend(sorted(list(self.root_dir.rglob(f"*.{e}"))))
self.tform = make_tranforms(image_transforms)
def __len__(self):
if self.captions is not None:
return len(self.captions.keys())
else:
return len(self.paths)
def __getitem__(self, index):
data = {}
if self.captions is not None:
chosen = list(self.captions.keys())[index]
caption = self.captions.get(chosen, None)
if caption is None:
caption = self.default_caption
filename = self.root_dir/chosen
else:
filename = self.paths[index]
if self.return_paths:
data["path"] = str(filename)
im = Image.open(filename).convert("RGB")
im = self.process_im(im)
data["image"] = im
if self.captions is not None:
data["txt"] = caption
else:
data["txt"] = self.default_caption
if self.postprocess is not None:
data = self.postprocess(data)
return data
def process_im(self, im):
im = im.convert("RGB")
return self.tform(im)
import random
class TransformDataset():
def __init__(self, ds, extra_label="sksbspic"):
self.ds = ds
self.extra_label = extra_label
self.transforms = {
"align": transforms.Resize(768),
"centerzoom": transforms.CenterCrop(768),
"randzoom": transforms.RandomCrop(768),
}
def __getitem__(self, index):
data = self.ds[index]
im = data['image']
im = im.permute(2,0,1)
# In case data is smaller than expected
im = transforms.Resize(1024)(im)
tform_name = random.choice(list(self.transforms.keys()))
im = self.transforms[tform_name](im)
im = im.permute(1,2,0)
data['image'] = im
data['txt'] = data['txt'] + f" {self.extra_label} {tform_name}"
return data
def __len__(self):
return len(self.ds)
def hf_dataset(
name,
image_transforms=[],
image_column="image",
text_column="text",
split='train',
image_key='image',
caption_key='txt',
):
"""Make huggingface dataset with appropriate list of transforms applied
"""
ds = load_dataset(name, split=split)
tform = make_tranforms(image_transforms)
assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}"
def pre_process(examples):
processed = {}
processed[image_key] = [tform(im) for im in examples[image_column]]
processed[caption_key] = examples[text_column]
return processed
ds.set_transform(pre_process)
return ds
class TextOnly(Dataset):
def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
"""Returns only captions with dummy images"""
self.output_size = output_size
self.image_key = image_key
self.caption_key = caption_key
if isinstance(captions, Path):
self.captions = self._load_caption_file(captions)
else:
self.captions = captions
if n_gpus > 1:
# hack to make sure that all the captions appear on each gpu
repeated = [n_gpus*[x] for x in self.captions]
self.captions = []
[self.captions.extend(x) for x in repeated]
def __len__(self):
return len(self.captions)
def __getitem__(self, index):
dummy_im = torch.zeros(3, self.output_size, self.output_size)
dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
return {self.image_key: dummy_im, self.caption_key: self.captions[index]}
def _load_caption_file(self, filename):
with open(filename, 'rt') as f:
captions = f.readlines()
return [x.strip('\n') for x in captions]
import random
import json
class IdRetreivalDataset(FolderData):
def __init__(self, ret_file, *args, **kwargs):
super().__init__(*args, **kwargs)
with open(ret_file, "rt") as f:
self.ret = json.load(f)
def __getitem__(self, index):
data = super().__getitem__(index)
key = self.paths[index].name
matches = self.ret[key]
if len(matches) > 0:
retreived = random.choice(matches)
else:
retreived = key
filename = self.root_dir/retreived
im = Image.open(filename).convert("RGB")
im = self.process_im(im)
# data["match"] = im
data["match"] = torch.cat((data["image"], im), dim=-1)
return data