Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
import torch | |
from PIL import Image | |
import time | |
from segment_anything import sam_model_registry, SamPredictor | |
def sam_init(device_id=0): | |
sam_checkpoint = os.path.join(os.path.dirname(__file__), "ckpt/sam_vit_h_4b8939.pth") | |
model_type = "vit_h" | |
device = "cuda:{}".format(device_id) if torch.cuda.is_available() else "cpu" | |
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=device) | |
predictor = SamPredictor(sam) | |
return predictor | |
def sam_out_nosave(predictor, input_image, bbox): | |
bbox = np.array(bbox) | |
image = np.asarray(input_image) | |
start_time = time.time() | |
predictor.set_image(image) | |
h, w, _ = image.shape | |
input_point = np.array([[h//2, w//2]]) | |
input_label = np.array([1]) | |
masks, scores, logits = predictor.predict( | |
point_coords=input_point, | |
point_labels=input_label, | |
multimask_output=True, | |
) | |
masks_bbox, scores_bbox, logits_bbox = predictor.predict( | |
box=bbox, | |
multimask_output=True | |
) | |
print(f"SAM Time: {time.time() - start_time:.3f}s") | |
opt_idx = np.argmax(scores) | |
mask = masks[opt_idx] | |
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8) | |
out_image[:, :, :3] = image | |
out_image_bbox = out_image.copy() | |
out_image[:, :, 3] = mask.astype(np.uint8) * 255 | |
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255 # np.argmax(scores_bbox) | |
torch.cuda.empty_cache() | |
return Image.fromarray(out_image_bbox, mode='RGBA') |