from functools import partial
from PIL import Image
import numpy as np
import gradio as gr
import torch
import os
import fire
from omegaconf import OmegaConf
from ldm.models.diffusion.sync_dreamer import SyncDDIMSampler, SyncMultiviewDiffusion
from ldm.util import add_margin, instantiate_from_config
from sam_utils import sam_init, sam_out_nosave
import torch
_TITLE = '''HarmonyView: Harmonizing Consistency and Diversity in One-Image-to-3D'''
_DESCRIPTION = '''
Given a single-view image, HarmonyView is able to generate multiview-consistent images, which enables direct 3D reconstruction with NeuS or NeRF without SDS loss
Procedure:
**Step 1**. Upload an image or select an example. ==> The foreground is masked out by SAM and we crop it as inputs.
**Step 2**. Select "Elevation angle "and click "Run generation". ==> Generate multiview images. The **Elevation angle** is the elevation of the input image. (This costs about 30s.)
You may adjust the **Crop size** and **Elevation angle** to get a better result!
To reconstruct a NeRF or a 3D mesh from the generated images, please refer to our [github repository](https://github.com/liuyuan-pal/SyncDreamer).
We have heavily borrowed codes from [One-2-3-45](https://huggingface.co/spaces/One-2-3-45/One-2-3-45), which is also an amazing single-view reconstruction method.
'''
_USER_GUIDE0 = "Step1: Please upload an image in the block above (or choose an example shown in the left)."
# _USER_GUIDE1 = "Step1: Please select a **Crop size** and click **Crop it**."
_USER_GUIDE2 = "Step2: Please choose a **Elevation angle** and click **Run Generate**. The **Elevation angle** is the elevation of the input image. This costs about 30s."
_USER_GUIDE3 = "Generated multiview images are shown below! (You may adjust the **Crop size** and **Elevation angle** to get a better result!)"
others = '''**Step 1**. Select "Crop size" and click "Crop it". ==> The foreground object is centered and resized. '''
deployed = True
if deployed:
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
class BackgroundRemoval:
def __init__(self, device='cuda'):
from carvekit.api.high import HiInterface
self.interface = HiInterface(
object_type="object", # Can be "object" or "hairs-like".
batch_size_seg=5,
batch_size_matting=1,
device=device,
seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net
matting_mask_size=2048,
trimap_prob_threshold=231,
trimap_dilation=30,
trimap_erosion_iters=5,
fp16=True,
)
@torch.no_grad()
def __call__(self, image):
# image: [H, W, 3] array in [0, 255].
image = self.interface([image])[0]
return image
def resize_inputs(image_input, crop_size):
if image_input is None: return None
alpha_np = np.asarray(image_input)[:, :, 3]
coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
min_x, min_y = np.min(coords, 0)
max_x, max_y = np.max(coords, 0)
ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
h, w = ref_img_.height, ref_img_.width
scale = crop_size / max(h, w)
h_, w_ = int(scale * h), int(scale * w)
ref_img_ = ref_img_.resize((w_, h_), resample=Image.BICUBIC)
results = add_margin(ref_img_, size=256)
return results
def generate(model, sample_steps, batch_view_num, sample_num, cfg_scale_1, cfg_scale_2, seed, image_input, elevation_input):
if deployed:
assert isinstance(model, SyncMultiviewDiffusion)
seed=int(seed)
torch.random.manual_seed(seed)
np.random.seed(seed)
# prepare data
image_input = np.asarray(image_input)
image_input = image_input.astype(np.float32) / 255.0
alpha_values = image_input[:,:, 3:]
image_input[:, :, :3] = alpha_values * image_input[:,:, :3] + 1 - alpha_values # white background
image_input = image_input[:, :, :3] * 2.0 - 1.0
image_input = torch.from_numpy(image_input.astype(np.float32))
elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32))
data = {"input_image": image_input, "input_elevation": elevation_input}
for k, v in data.items():
if deployed:
data[k] = v.unsqueeze(0).cuda()
else:
data[k] = v.unsqueeze(0)
data[k] = torch.repeat_interleave(data[k], sample_num, dim=0)
if deployed:
sampler = SyncDDIMSampler(model, sample_steps)
x_sample = model.sample(sampler, data, (cfg_scale_1, cfg_scale_2), batch_view_num)
else:
x_sample = torch.zeros(sample_num, 16, 3, 256, 256)
B, N, _, H, W = x_sample.shape
x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
x_sample = x_sample.permute(0,1,3,4,2).cpu().numpy() * 255
x_sample = x_sample.astype(np.uint8)
results = []
for bi in range(B):
results.append(np.concatenate([x_sample[bi,ni] for ni in range(N)], 1))
results = np.concatenate(results, 0)
return Image.fromarray(results)
else:
return Image.fromarray(np.zeros([sample_num*256,16*256,3],np.uint8))
def sam_predict(predictor, removal, raw_im):
if raw_im is None: return None
if deployed:
raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS)
image_nobg = removal(raw_im.convert('RGB'))
arr = np.asarray(image_nobg)[:, :, -1]
x_nonzero = np.nonzero(arr.sum(axis=0))
y_nonzero = np.nonzero(arr.sum(axis=1))
x_min = int(x_nonzero[0].min())
y_min = int(y_nonzero[0].min())
x_max = int(x_nonzero[0].max())
y_max = int(y_nonzero[0].max())
# image_nobg.save('./nobg.png')
image_nobg.thumbnail([512, 512], Image.Resampling.LANCZOS)
image_sam = sam_out_nosave(predictor, image_nobg.convert("RGB"), (x_min, y_min, x_max, y_max))
# imsave('./mask.png', np.asarray(image_sam)[:,:,3]*255)
image_sam = np.asarray(image_sam, np.float32) / 255
out_mask = image_sam[:, :, 3:]
out_rgb = image_sam[:, :, :3] * out_mask + 1 - out_mask
out_img = (np.concatenate([out_rgb, out_mask], 2) * 255).astype(np.uint8)
image_sam = Image.fromarray(out_img, mode='RGBA')
# image_sam.save('./output.png')
torch.cuda.empty_cache()
return image_sam
else:
return raw_im
def run_demo():
# device = f"cuda:0" if torch.cuda.is_available() else "cpu"
# models = None # init_model(device, os.path.join(code_dir, ckpt))
cfg = 'configs/syncdreamer.yaml'
ckpt = 'ckpt/syncdreamer-pretrain.ckpt'
config = OmegaConf.load(cfg)
# model = None
if deployed:
model = instantiate_from_config(config.model)
print(f'loading model from {ckpt} ...')
ckpt = torch.load(ckpt,map_location='cpu')
model.load_state_dict(ckpt['state_dict'], strict=True)
model = model.cuda().eval()
del ckpt
mask_predictor = sam_init()
removal = BackgroundRemoval()
else:
model = None
mask_predictor = None
removal = None
# NOTE: Examples must match inputs
examples_full = [
['hf_demo/examples/monkey.png',30,200],
['hf_demo/examples/cat.png',30,200],
['hf_demo/examples/crab.png',30,200],
['hf_demo/examples/elephant.png',30,200],
['hf_demo/examples/flower.png',0,200],
['hf_demo/examples/forest.png',30,200],
['hf_demo/examples/teapot.png',20,200],
['hf_demo/examples/basket.png',30,200],
]
image_block = gr.Image(type='pil', image_mode='RGBA', height=256, label='Input image', tool=None, interactive=True)
elevation = gr.Slider(-10, 40, 30, step=5, label='Elevation angle of the input image', interactive=True)
crop_size = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True)
# Compose demo layout & data flow.
with gr.Blocks(title=_TITLE, css="hf_demo/style.css") as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
# with gr.Column(scale=0):
# gr.DuplicateButton(value='Duplicate Space for private use', elem_id='duplicate-button')
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Column(scale=1.2):
gr.Examples(
examples=examples_full, # NOTE: elements must match inputs list!
inputs=[image_block, elevation, crop_size],
outputs=[image_block, elevation, crop_size],
cache_examples=False,
label='Examples (click one of the images below to start)',
examples_per_page=5,
)
with gr.Column(scale=0.8):
image_block.render()
guide_text = gr.Markdown(_USER_GUIDE0, visible=True)
fig0 = gr.Image(value=Image.open('assets/crop_size.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)
with gr.Column(scale=0.8):
sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False)
crop_size.render()
# crop_btn = gr.Button('Crop it', variant='primary', interactive=True)
fig1 = gr.Image(value=Image.open('assets/elevation.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)
with gr.Column(scale=0.8):
input_block = gr.Image(type='pil', image_mode='RGBA', label="Input to SyncDreamer", height=256, interactive=False)
elevation.render()
with gr.Accordion('Advanced options', open=False):
cfg_scale_1 = gr.Slider(1.0, 5.0, 2.0, step=0.1, label='Classifier free guidance', interactive=True)
cfg_scale_2 = gr.Slider(0.5, 1.5, 1.0, step=0.1, label='Classifier free guidance', interactive=True)
sample_num = gr.Slider(1, 2, 1, step=1, label='Sample num', interactive=False, info='How many instance (16 images per instance)')
sample_steps = gr.Slider(10, 300, 50, step=10, label='Sample steps', interactive=False)
batch_view_num = gr.Slider(1, 16, 16, step=1, label='Batch num', interactive=True)
seed = gr.Number(6033, label='Random seed', interactive=True)
run_btn = gr.Button('Run generation', variant='primary', interactive=True)
output_block = gr.Image(type='pil', image_mode='RGB', label="Outputs of SyncDreamer", height=256, interactive=False)
def update_guide2(text, im):
if im is None:
return _USER_GUIDE0
else:
return text
update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)
image_block.clear(fn=partial(update_guide, _USER_GUIDE0), outputs=[guide_text], queue=False)
image_block.change(fn=partial(sam_predict, mask_predictor, removal), inputs=[image_block], outputs=[sam_block], queue=True) \
.success(fn=resize_inputs, inputs=[sam_block, crop_size], outputs=[input_block], queue=True)\
.success(fn=partial(update_guide2, _USER_GUIDE2), inputs=[image_block], outputs=[guide_text], queue=False)\
crop_size.change(fn=resize_inputs, inputs=[sam_block, crop_size], outputs=[input_block], queue=True)\
.success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
# crop_btn.click(fn=resize_inputs, inputs=[sam_block, crop_size], outputs=[input_block], queue=False)\
# .success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
run_btn.click(partial(generate, model), inputs=[sample_steps, batch_view_num, sample_num, cfg_scale_1, cfg_scale_2, seed, input_block, elevation], outputs=[output_block], queue=True)\
.success(fn=partial(update_guide, _USER_GUIDE3), outputs=[guide_text], queue=False)
demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
if __name__=="__main__":
fire.Fire(run_demo)