Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,142 +1,149 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
-
#import spaces #[uncomment to use ZeroGPU]
|
5 |
-
from diffusers import DiffusionPipeline
|
6 |
import torch
|
|
|
|
|
7 |
|
8 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
torch_dtype = torch.float32
|
15 |
|
16 |
-
|
17 |
-
|
|
|
18 |
|
19 |
-
|
20 |
-
|
|
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
prompt =
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
css="""
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
}
|
53 |
"""
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
with gr.Row():
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
)
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
result = gr.Image(label="Result", show_label=False)
|
75 |
-
|
76 |
-
with gr.Accordion("Advanced Settings", open=False):
|
77 |
-
|
78 |
-
negative_prompt = gr.Text(
|
79 |
-
label="Negative prompt",
|
80 |
-
max_lines=1,
|
81 |
-
placeholder="Enter a negative prompt",
|
82 |
-
visible=False,
|
83 |
-
)
|
84 |
-
|
85 |
-
seed = gr.Slider(
|
86 |
-
label="Seed",
|
87 |
-
minimum=0,
|
88 |
-
maximum=MAX_SEED,
|
89 |
-
step=1,
|
90 |
-
value=0,
|
91 |
-
)
|
92 |
-
|
93 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
94 |
-
|
95 |
-
with gr.Row():
|
96 |
-
|
97 |
-
width = gr.Slider(
|
98 |
-
label="Width",
|
99 |
-
minimum=256,
|
100 |
-
maximum=MAX_IMAGE_SIZE,
|
101 |
-
step=32,
|
102 |
-
value=1024, #Replace with defaults that work for your model
|
103 |
-
)
|
104 |
-
|
105 |
-
height = gr.Slider(
|
106 |
-
label="Height",
|
107 |
-
minimum=256,
|
108 |
-
maximum=MAX_IMAGE_SIZE,
|
109 |
-
step=32,
|
110 |
-
value=1024, #Replace with defaults that work for your model
|
111 |
-
)
|
112 |
-
|
113 |
-
with gr.Row():
|
114 |
-
|
115 |
-
guidance_scale = gr.Slider(
|
116 |
-
label="Guidance scale",
|
117 |
-
minimum=0.0,
|
118 |
-
maximum=10.0,
|
119 |
-
step=0.1,
|
120 |
-
value=0.0, #Replace with defaults that work for your model
|
121 |
-
)
|
122 |
-
|
123 |
-
num_inference_steps = gr.Slider(
|
124 |
-
label="Number of inference steps",
|
125 |
-
minimum=1,
|
126 |
-
maximum=50,
|
127 |
-
step=1,
|
128 |
-
value=2, #Replace with defaults that work for your model
|
129 |
-
)
|
130 |
-
|
131 |
-
gr.Examples(
|
132 |
-
examples = examples,
|
133 |
-
inputs = [prompt]
|
134 |
)
|
135 |
-
gr.on(
|
136 |
-
triggers=[run_button.click, prompt.submit],
|
137 |
-
fn = infer,
|
138 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
139 |
-
outputs = [result, seed]
|
140 |
-
)
|
141 |
|
142 |
-
demo.
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
+
from PIL import Image
|
|
|
|
|
4 |
import torch
|
5 |
+
from peft import PeftModel
|
6 |
+
import numpy as np
|
7 |
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
torch_dtype = torch.float32
|
10 |
|
11 |
+
# Load the fine-tuned base model
|
12 |
+
base_model = AutoModelForCausalLM.from_pretrained('byh711/FLODA-deepfake', trust_remote_code=True, torch_dtype=torch_dtype).to(device)
|
13 |
+
processor = AutoProcessor.from_pretrained('byh711/FLODA-deepfake', trust_remote_code=True)
|
|
|
14 |
|
15 |
+
# Load the LoRA weights
|
16 |
+
model = PeftModel.from_pretrained(base_model, peft_model_path)
|
17 |
+
model.eval()
|
18 |
|
19 |
+
def caption_generate(task_prompt, text_input=None, image=None):
|
20 |
+
if isinstance(image, np.ndarray):
|
21 |
+
image = Image.fromarray(image)
|
22 |
|
23 |
+
if text_input is None:
|
24 |
+
prompt = task_prompt
|
25 |
+
else:
|
26 |
+
prompt = task_prompt + text_input
|
27 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
28 |
+
generated_ids = model.generate(
|
29 |
+
input_ids=inputs["input_ids"],
|
30 |
+
pixel_values=inputs["pixel_values"],
|
31 |
+
max_new_tokens=1024,
|
32 |
+
num_beams=3
|
33 |
+
)
|
34 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
35 |
+
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
36 |
|
37 |
+
return parsed_answer[task_prompt][1:-1]
|
38 |
+
|
39 |
+
|
40 |
+
def run_example(task_prompt, text_input=None, image=None):
|
41 |
+
|
42 |
+
if text_input is None:
|
43 |
+
prompt = task_prompt
|
44 |
+
else:
|
45 |
+
prompt = task_prompt + text_input
|
46 |
+
|
47 |
+
if isinstance(image, np.ndarray):
|
48 |
+
image = Image.fromarray(image)
|
49 |
+
|
50 |
+
image = image.convert("RGB")
|
51 |
+
|
52 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
53 |
+
inputs = {k: v.to(torch_dtype) if v.is_floating_point() else v for k, v in inputs.items()}
|
54 |
+
|
55 |
+
generated_ids = base_model.generate(
|
56 |
+
input_ids=inputs["input_ids"],
|
57 |
+
pixel_values=inputs["pixel_values"],
|
58 |
+
max_new_tokens=1024,
|
59 |
+
num_beams=3
|
60 |
+
)
|
61 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
62 |
+
result = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))['<DEEPFAKE_DETECTION>']
|
63 |
|
64 |
+
if result.lower() == "yes":
|
65 |
+
return "This is a real image."
|
66 |
+
elif result.lower() == "no":
|
67 |
+
return "This is a fake image."
|
68 |
+
else:
|
69 |
+
return f"Uncertain. Model output: {result}"
|
70 |
+
|
71 |
+
# Define the Gradio interface
|
72 |
+
css = """
|
73 |
+
body {
|
74 |
+
background-color: #1e1e2e;
|
75 |
+
color: #d4d4dc;
|
76 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
77 |
+
}
|
78 |
+
|
79 |
+
#output {
|
80 |
+
height: 500px;
|
81 |
+
overflow: auto;
|
82 |
+
border: 1px solid #444;
|
83 |
+
background-color: #282c34;
|
84 |
+
color: #f1f1f1;
|
85 |
+
padding: 10px;
|
86 |
+
}
|
87 |
+
|
88 |
+
.gr-button {
|
89 |
+
background-color: #3a3f51;
|
90 |
+
border: none;
|
91 |
+
color: #ffffff;
|
92 |
+
padding: 10px 20px;
|
93 |
+
text-align: center;
|
94 |
+
font-size: 14px;
|
95 |
+
cursor: pointer;
|
96 |
+
transition: 0.3s;
|
97 |
+
}
|
98 |
+
|
99 |
+
.gr-button:hover {
|
100 |
+
background-color: #4b5263;
|
101 |
+
}
|
102 |
+
|
103 |
+
.gr-textbox {
|
104 |
+
background-color: #2e2e38;
|
105 |
+
border: 1px solid #555;
|
106 |
+
color: #ffffff;
|
107 |
+
}
|
108 |
+
|
109 |
+
.gr-markdown {
|
110 |
+
color: #d4d4dc;
|
111 |
}
|
112 |
"""
|
113 |
|
114 |
+
js_func = """
|
115 |
+
function refresh() {
|
116 |
+
const url = new URL(window.location);
|
117 |
+
|
118 |
+
if (url.searchParams.get('__theme') !== 'dark') {
|
119 |
+
url.searchParams.set('__theme', 'dark');
|
120 |
+
window.location.href = url.href;
|
121 |
+
}
|
122 |
+
}
|
123 |
+
"""
|
124 |
+
|
125 |
+
TITLE = "# FLODA: Vision-Language Models for Deepfake Detection"
|
126 |
+
DESCRIPTION = """
|
127 |
+
FLODA (FLorence-2 Optimized for Deepfake Assessment) is an advanced deepfake detection model leveraging the power of [Florence-2](https://huggingface.co/microsoft/Florence-2-base-ft).
|
128 |
+
FLODA combines image captioning with authenticity assessment in a single end-to-end architecture, demonstrating superior performance compared to existing benchmarks.
|
129 |
+
Learn more about FLODA in the published paper [here](https://github.com/byh711/FLODA).
|
130 |
+
"""
|
131 |
+
|
132 |
+
with gr.Blocks(js=js_func, css=css) as demo:
|
133 |
+
gr.Markdown(TITLE)
|
134 |
+
gr.Markdown(DESCRIPTION)
|
135 |
+
with gr.Tab(label="FLODA: Deepfake Detection"):
|
136 |
with gr.Row():
|
137 |
+
with gr.Column():
|
138 |
+
input_img = gr.Image(label="Input Picture", type="numpy")
|
139 |
+
submit_btn = gr.Button(value="Submit")
|
140 |
+
with gr.Column():
|
141 |
+
output_text = gr.Textbox(label="Output Text")
|
142 |
+
|
143 |
+
submit_btn.click(
|
144 |
+
fn=lambda image: run_example("<DEEPFAKE_DETECTION>", text_input=None, image=image),
|
145 |
+
inputs=[input_img],
|
146 |
+
outputs=[output_text]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
demo.launch(debug=True)
|