import gradio as gr from transformers import AutoProcessor, AutoModelForCausalLM from PIL import Image import torch from peft import PeftModel import numpy as np device = torch.device("cuda" if torch.cuda.is_available() else "cpu") torch_dtype = torch.float32 # Load the fine-tuned base model base_model = AutoModelForCausalLM.from_pretrained('byh711/FLODA-deepfake', trust_remote_code=True, torch_dtype=torch_dtype).to(device) processor = AutoProcessor.from_pretrained('byh711/FLODA-deepfake', trust_remote_code=True) # Load the LoRA weights model = PeftModel.from_pretrained(base_model, peft_model_path) model.eval() def caption_generate(task_prompt, text_input=None, image=None): if isinstance(image, np.ndarray): image = Image.fromarray(image) if text_input is None: prompt = task_prompt else: prompt = task_prompt + text_input inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype) generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height)) return parsed_answer[task_prompt][1:-1] def run_example(task_prompt, text_input=None, image=None): if text_input is None: prompt = task_prompt else: prompt = task_prompt + text_input if isinstance(image, np.ndarray): image = Image.fromarray(image) image = image.convert("RGB") inputs = processor(text=prompt, images=image, return_tensors="pt").to(device) inputs = {k: v.to(torch_dtype) if v.is_floating_point() else v for k, v in inputs.items()} generated_ids = base_model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] result = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))[''] if result.lower() == "yes": return "This is a real image." elif result.lower() == "no": return "This is a fake image." else: return f"Uncertain. Model output: {result}" # Define the Gradio interface css = """ body { background-color: #1e1e2e; color: #d4d4dc; font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; } #output { height: 500px; overflow: auto; border: 1px solid #444; background-color: #282c34; color: #f1f1f1; padding: 10px; } .gr-button { background-color: #3a3f51; border: none; color: #ffffff; padding: 10px 20px; text-align: center; font-size: 14px; cursor: pointer; transition: 0.3s; } .gr-button:hover { background-color: #4b5263; } .gr-textbox { background-color: #2e2e38; border: 1px solid #555; color: #ffffff; } .gr-markdown { color: #d4d4dc; } """ js_func = """ function refresh() { const url = new URL(window.location); if (url.searchParams.get('__theme') !== 'dark') { url.searchParams.set('__theme', 'dark'); window.location.href = url.href; } } """ TITLE = "# FLODA: Vision-Language Models for Deepfake Detection" DESCRIPTION = """ FLODA (FLorence-2 Optimized for Deepfake Assessment) is an advanced deepfake detection model leveraging the power of [Florence-2](https://huggingface.co/microsoft/Florence-2-base-ft). FLODA combines image captioning with authenticity assessment in a single end-to-end architecture, demonstrating superior performance compared to existing benchmarks. Learn more about FLODA in the published paper [here](https://github.com/byh711/FLODA). """ with gr.Blocks(js=js_func, css=css) as demo: gr.Markdown(TITLE) gr.Markdown(DESCRIPTION) with gr.Tab(label="FLODA: Deepfake Detection"): with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Picture", type="numpy") submit_btn = gr.Button(value="Submit") with gr.Column(): output_text = gr.Textbox(label="Output Text") submit_btn.click( fn=lambda image: run_example("", text_input=None, image=image), inputs=[input_img], outputs=[output_text] ) demo.launch(debug=True)