Spaces:
Running
Running
File size: 6,456 Bytes
225177d 45e3f0f 225177d 45e3f0f 225177d 45e3f0f 5b07f21 45e3f0f 225177d 5b07f21 45e3f0f 225177d 45e3f0f 7997ba5 45e3f0f 225177d fb9bb4a 225177d 5b07f21 225177d 5b07f21 45e3f0f 225177d 5b07f21 225177d b0c72d5 5b07f21 225177d 5b07f21 225177d 5b07f21 225177d 7997ba5 5b07f21 225177d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import streamlit as st
import pandas as pd
import altair as alt
import base64
import pdfkit
import io
from comparateur import *
def load_svg_as_base64(svg_file_path):
with open(svg_file_path, "rb") as svg_file:
return base64.b64encode(svg_file.read()).decode()
def save_pdf(html_content):
pdf = pdfkit.from_string(html_content, False)
return pdf
def display_comparaison_html(value_init, ratio_equivalent, icon, unit):
link_url = f"https://impactco2.fr/outils/comparateur?value={value_init}&comparisons=tgv,eauenbouteille,voiturethermique"
html = f"""
<div style='text-align: center;'>
<a href='{link_url}' target='_blank'><img src='{icon}' alt='{unit}' width='50'></a>
</div>
<div style='text-align: center;'>
<b>{compare(value_init, ratio_equivalent):.2f}</b> {unit}
</div>
"""
return html
def display_cf_comparison():
svg_file_path = "feuille.svg"
svg_base64 = load_svg_as_base64(svg_file_path)
html_content = f"""
<div style='display: flex; align-items: center;'>
<h4 style='margin: 0;'>Votre consommation Carbone</h4>
<img src='data:image/svg+xml;base64,{svg_base64}' alt='svg' width='15' height='15' style='margin-left: 10px;'>
</div>
<br>
"""
serveur_emission = st.session_state['emission'].stop()
emission_api = sum([value["el"] for value in st.session_state["partial_emissions"].values()])
total_emission = serveur_emission + emission_api
pourcentage_api = emission_api / total_emission
pourcentage_serveur = serveur_emission / total_emission
html_content += f"<div style='text-align: center; margin-bottom: 10px;'><b>{total_emission*1000:.3f}</b> g eq. CO2</div>"
html_content += f"<p>Dont :</p>"
html_content += f"<p>- Empreinte serveur (via CodeCarbon) : <b>{serveur_emission*1000:.3f}</b> g eq. CO2 ({pourcentage_serveur:.2%})</p>"
html_content += f"<p>- Empreinte IA (via EcoLogits) : <b>{emission_api*1000:.3f}</b> g eq. CO2 ({pourcentage_api:.2%})</p>"
html_content += "<h4>Votre équivalence</h4>"
html_content += """
<div style='display: flex; justify-content: space-around;'>
"""
html_content += f"""
<div>
{display_comparaison_html(total_emission, dict_comparaison_1kgCO2["eau en litre"][0]*1000, dict_comparaison_1kgCO2["eau en litre"][1], "ml")}
</div>
<div>
{display_comparaison_html(total_emission, dict_comparaison_1kgCO2["tgv en km"][0], dict_comparaison_1kgCO2["tgv en km"][1], "km")}
</div>
<div>
{display_comparaison_html(total_emission, dict_comparaison_1kgCO2["voiture en km"][0]*1000, dict_comparaison_1kgCO2["voiture en km"][1], "m")}
</div>
"""
html_content += "</div><br>"
html_content += f"""
<br>
<div style='display: flex; align-items: center;'>
<p>Powered by <b>ADEME</b></p>
<a href='https://www.ademe.fr' target='_blank'><img src='https://www.ademe.fr/wp-content/uploads/2022/11/ademe-logo-2022-1.svg' alt='svg' width='30' height='30' style='margin-left: 10px;'></a>
</div>
<br>
"""
#st.markdown(html_content, unsafe_allow_html=True)
return html_content
def color_scale(val):
if val == '-':
return 'background-color: white'
elif val <= 1:
return 'background-color: rgba(0,100,0,0.5)' # dark green with opacity
elif val <= 10:
return 'background-color: rgba(0,128,0,0.5)' # green with opacity
elif val <= 50:
return 'background-color: rgba(255,255,0,0.5)' # yellow with opacity
elif val <= 100:
return 'background-color: rgba(255,165,0,0.5)' # orange with opacity
else:
return 'background-color: rgba(255,0,0,0.5)' # red with opacity
def get_carbon_footprint_html():
html_content = "<h2>EMPREINTE ÉNERGÉTIQUE DE L'APPLICATION IA CARTO RSE</h2>"
html_content += display_cf_comparison()
table = get_table_empreintes_detailed()
table.replace({0.00: '-'}, inplace=True)
styled_df = table[['Consommation Totale']].rename(columns={'Consommation Totale': 'Consommation totale (g eqCo2)'})
styled_df = styled_df.style.applymap(color_scale, subset=['Consommation totale (g eqCo2)'])
html_content += """
<style>
.centered-table {
margin-left: auto;
margin-right: auto;
border-collapse: collapse;
width: 80%;
}
.centered-table th, .centered-table td {
border: 1px solid #ddd;
padding: 8px;
text-align: left;
}
.centered-table th {
background-color: #f2f2f2;
}
</style>
"""
html_content += """
<h2>DÉTAIL PAR TÂCHE</h2>
<div style="overflow-x:auto;">
"""
html_content += styled_df.set_table_attributes('class="centered-table"').to_html()
html_content += """
</div>
"""
serveur_emission = st.session_state['emission'].stop()
emission_api = sum([value["el"] for value in st.session_state["partial_emissions"].values()])
total_emission = serveur_emission + emission_api
pourcentage_api = emission_api / total_emission
pourcentage_serveur = serveur_emission / total_emission
df = pd.DataFrame({"Catégorie": ["Identification + dessin", "IA (extraction pp + dialogue)"], "valeur": [pourcentage_serveur, pourcentage_api]})
color_scale_alt = alt.Scale(domain=['Identification + dessin', 'IA (extraction pp + dialogue)'], range=['#011166', '#63abdf'])
base = alt.Chart(df).encode(
theta=alt.Theta(field="valeur", type="quantitative", stack=True),
color=alt.Color(field="Catégorie", type="nominal",scale=color_scale_alt)
)
pie = base.mark_arc(outerRadius=100)
text = base.mark_text(radius=150, fill="black",align='center', baseline='middle',fontSize=14).encode(alt.Text(field="valeur", type="quantitative", format=".2%"))
chart = alt.layer(pie, text, data=df).resolve_scale(theta="independent")
html_content += """
<h2>SYNTHESE (Dialogue IA et non IA)</h2>
"""
chart.save("chart.png")
with open("chart.png", "rb") as image_file:
encoded_image = base64.b64encode(image_file.read()).decode()
html_content += f'<div style="text-align:center;"><img src="data:image/png;base64,{encoded_image}" alt="Pie chart"></div>'
return html_content
|