OpenData-Bordeaux-RSE / partie_prenante_carte.py
Ilyas KHIAT
prompts suggestions and pdf fix
4dc7327
raw
history blame
18.7 kB
import streamlit as st
import pandas as pd
import numpy as np
import re
import random
import streamlit as st
from dotenv import load_dotenv
from langchain_experimental.text_splitter import SemanticChunker
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.chat_models import ChatOpenAI
from langchain import hub
from langchain_core.runnables import RunnablePassthrough
from langchain_community.document_loaders import WebBaseLoader,FireCrawlLoader,PyPDFLoader
from langchain_core.prompts.prompt import PromptTemplate
import os
from high_chart import test_chart
from chat_with_pps import get_response
load_dotenv()
def get_docs_from_website(urls):
loader = WebBaseLoader(urls, header_template={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
})
try:
docs = loader.load()
return docs
except Exception as e:
return None
def get_docs_from_website_fc(urls,firecrawl_api_key):
docs = []
try:
for url in urls:
loader = FireCrawlLoader(api_key=firecrawl_api_key, url = url,mode="scrape")
docs+=loader.load()
return docs
except Exception as e:
return None
def get_doc_chunks(docs):
# Split the loaded data
# text_splitter = RecursiveCharacterTextSplitter(
# chunk_size=500,
# chunk_overlap=100)
text_splitter = SemanticChunker(OpenAIEmbeddings(model="text-embedding-3-small"))
docs = text_splitter.split_documents(docs)
return docs
def get_doc_chunks_fc(docs):
# Split the loaded data
# text_splitter = RecursiveCharacterTextSplitter(
# chunk_size=500,
# chunk_overlap=100)
text_splitter = SemanticChunker(OpenAIEmbeddings(model="text-embedding-3-small"))
docs_splitted = []
for text in docs:
text_splitted = text_splitter.split_text(text)
docs_splitted+=text_splitted
return docs_splitted
def get_vectorstore_from_docs(doc_chunks):
embedding = OpenAIEmbeddings(model="text-embedding-3-small")
vectorstore = FAISS.from_documents(documents=doc_chunks, embedding=embedding)
return vectorstore
def get_vectorstore_from_text(texts):
embedding = OpenAIEmbeddings(model="text-embedding-3-small")
vectorstore = FAISS.from_texts(texts=texts, embedding=embedding)
return vectorstore
def get_conversation_chain(vectorstore):
llm = ChatOpenAI(model="gpt-4o",temperature=0.5, max_tokens=2048)
retriever=vectorstore.as_retriever()
prompt = hub.pull("rlm/rag-prompt")
# Chain
rag_chain = (
{"context": retriever , "question": RunnablePassthrough()}
| prompt
| llm
)
return rag_chain
# FILL THE PROMPT FOR THE QUESTION VARIABLE THAT WILL BE USED IN THE RAG PROMPT, ATTENTION NOT CONFUSE WITH THE RAG PROMPT
def fill_promptQ_template(input_variables, template):
prompt = PromptTemplate(input_variables=["BRAND_NAME","BRAND_DESCRIPTION"], template=template)
return prompt.format(BRAND_NAME=input_variables["BRAND_NAME"], BRAND_DESCRIPTION=input_variables["BRAND_DESCRIPTION"])
def text_to_list(text):
lines = text.replace("- ","").split('\n')
lines = [line.split() for line in lines]
items = [[' '.join(line[:-1]),line[-1]] for line in lines]
# Assuming `items` is the list of items
for item in items:
item[1] = re.sub(r'\D', '', item[1])
return items
def delete_pp(pps):
for pp in pps:
for i in range(len(st.session_state['pp_grouped'])):
if st.session_state['pp_grouped'][i]['name'] == pp:
del st.session_state['pp_grouped'][i]
break
def display_list_urls():
for index, item in enumerate(st.session_state["urls"]):
emp = st.empty() # Create an empty placeholder
col1, col2 = emp.columns([7, 3]) # Divide the space into two columns
# Button to delete the entry, placed in the second column
if col2.button("❌", key=f"but{index}"):
temp = st.session_state['parties_prenantes'][index]
delete_pp(temp)
del st.session_state.urls[index]
del st.session_state["parties_prenantes"][index]
st.rerun() # Rerun the app to update the display
if len(st.session_state.urls) > index:
# Instead of using markdown, use an expander in the first column
with col1.expander(f"Source {index+1}: {item}"):
pp = st.session_state["parties_prenantes"][index]
st.write(pd.DataFrame(pp, columns=["Partie prenante"]))
else:
emp.empty() # Clear the placeholder if the index exceeds the list
def colored_circle(color):
return f'<span style="display: inline-block; width: 15px; height: 15px; border-radius: 50%; background-color: {color};"></span>'
def display_list_pps():
for index, item in enumerate(st.session_state["pp_grouped"]):
emp = st.empty()
col1, col2 = emp.columns([7, 3])
if col2.button("❌", key=f"butp{index}"):
del st.session_state["pp_grouped"][index]
st.rerun()
if len(st.session_state["pp_grouped"]) > index:
name = st.session_state["pp_grouped"][index]["name"]
col1.markdown(f'<p>{colored_circle(st.session_state["pp_grouped"][index]["color"])} {st.session_state["pp_grouped"][index]["name"]}</p>',
unsafe_allow_html=True
)
else:
emp.empty()
def extract_pp(docs,input_variables):
template_extraction_PP = """
Objectif : Identifiez toutes les parties prenantes de la marque suivante :
Le nom de la marque de référence est le suivant : {BRAND_NAME}
TA RÉPONSE DOIT ÊTRE SOUS FORME DE LISTE DE NOMS DE MARQUES, CHAQUE NOM SUR UNE LIGNE SÉPARÉE.
"""
#don't forget to add the input variables from the maim function
if docs == None:
return "445"
#get text chunks
text_chunks = get_doc_chunks(docs)
#create vectorstore
vectorstore = get_vectorstore_from_docs(text_chunks)
chain = get_conversation_chain(vectorstore)
question = fill_promptQ_template(input_variables, template_extraction_PP)
response = chain.invoke(question)
# version plus poussée a considérer
# each item in the list is a list with the name of the brand and the similarity percentage
# partie_prenante = text_to_list(response.content)
if "ne sais pas" in response.content:
return "444"
#version simple
partie_prenante = response.content.replace("- ","").split('\n')
partie_prenante = [item.strip() for item in partie_prenante]
return partie_prenante
def generate_random_color():
# Generate random RGB values
r = random.randint(0, 255)
g = random.randint(0, 255)
b = random.randint(0, 255)
# Convert RGB to hexadecimal
color_hex = '#{:02x}{:02x}{:02x}'.format(r, g, b)
return color_hex
def format_pp_add_viz(pp):
y = 50
x = 50
for i in range(len(st.session_state['pp_grouped'])):
if st.session_state['pp_grouped'][i]['y'] == y and st.session_state['pp_grouped'][i]['x'] == x:
y += 5
if y > 95:
y = 50
x += 5
if st.session_state['pp_grouped'][i]['name'] == pp:
return None
else:
st.session_state['pp_grouped'].append({'name':pp, 'x':x,'y':y, 'color':generate_random_color()})
def add_pp(new_pp, default_value=50):
new_pp = sorted(new_pp)
new_pp = [item.lower().capitalize().strip() for item in new_pp]
st.session_state['parties_prenantes'].append(new_pp)
for pp in new_pp:
format_pp_add_viz(pp)
def add_existing_pps(pp,pouvoir,influence):
for i in range(len(st.session_state['pp_grouped'])):
if st.session_state['pp_grouped'][i]['name'] == pp:
st.session_state['pp_grouped'][i]['x'] = influence
st.session_state['pp_grouped'][i]['y'] = pouvoir
return None
st.session_state['pp_grouped'].append({'name':pp, 'x':influence,'y':pouvoir, 'color':generate_random_color()})
def load_csv(file):
df = pd.read_csv(file)
for index, row in df.iterrows():
add_existing_pps(row['parties prenantes'],row['pouvoir'],row['influence'])
def add_pp_input_text():
new_pp = st.text_input("Ajouter une partie prenante")
if st.button("Ajouter",key="add_single_pp"):
format_pp_add_viz(new_pp)
def complete_and_verify_url(partial_url):
# Regex pattern for validating a URL
regex = re.compile(
r'^(?:http|ftp)s?://' # http:// or https://
r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+[A-Z]{2,8}\.?|' # domain
r'localhost|' # localhost...
r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # ...or ip
r'(?::\d+)?' # optional port
r'(?:/?|[/?]\S+)$', re.IGNORECASE)
regex = re.compile(
r'^(?:http|ftp)s?://' # http:// or https://
r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+[A-Z]{2,8}\.?|' # domain name
r'localhost|' # or localhost
r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # or IPv4 address
r'(?::\d+)?' # optional port
r'(?:[/?#][^\s]*)?$', # optional path, query, or fragment
re.IGNORECASE)
# Complete the URL if it doesn't have http:// or https://
if not partial_url.startswith(('http://', 'https://', 'www.')):
if not partial_url.startswith('www.'):
complete_url = 'https://www.' + partial_url
else:
complete_url = 'https://' + partial_url
elif partial_url.startswith('www.'):
complete_url = 'https://' + partial_url
else:
complete_url = partial_url
# Check if the URL is valid
if re.match(regex, complete_url):
return (True, complete_url)
else:
return (False, complete_url)
@st.experimental_dialog("Conseil IA",width="large")
def show_conseil_ia():
prompt = "Prenant compte les données de l'entreprise (activité, produits, services ...), quelles sont les principales parties prenantes à animer pour une démarche RSE réussie ?"
st.markdown(f"**{prompt}**")
response = st.write_stream(get_response(prompt, "",st.session_state["latest_doc"][0].page_content))
st.warning("Quittez et saisissez une autre URL")
def display_pp():
load_dotenv()
fire_crawl_api_key = os.getenv("FIRECRAWL_API_KEY")
#check if brand name and description are already set
if "Nom de la marque" not in st.session_state:
st.session_state["Nom de la marque"] = ""
#check if urls and partie prenante are already set
if "urls" not in st.session_state:
st.session_state["urls"] = []
if "parties_prenantes" not in st.session_state:
st.session_state['parties_prenantes'] = []
if "pp_grouped" not in st.session_state: #servira pour le plot et la cartographie des parties prenantes, regroupe sans doublons
st.session_state['pp_grouped'] = []
if "latest_doc" not in st.session_state:
st.session_state['latest_doc'] = ""
if "not_pp" not in st.session_state:
st.session_state["not_pp"] = ""
st.header("Parties prenantes de la marque")
#set brand name and description
brand_name = st.text_input("Nom de la marque", st.session_state["Nom de la marque"])
st.session_state["Nom de la marque"] = brand_name
option = st.radio("Source", ("A partir de votre site web", "A partir de vos documents entreprise","A partir de cartographie existante"))
#if the user chooses to extract from website
if option == "A partir de votre site web":
url = st.text_input("Ajouter une URL")
captions = ["L’IA prend en compte uniquement les textes contenus dans les pages web analysées","L’IA prend en compte les textes, les images et les liens URL contenus dans les pages web analysées"]
scraping_option = st.radio("Mode", ("Analyse rapide", "Analyse profonde"),horizontal=True,captions = captions)
#if the user clicks on the button
if st.button("ajouter",key="add_pp"):
st.session_state["not_pp"] = ""
#complete and verify the url
is_valid,url = complete_and_verify_url(url)
if not is_valid:
st.error("URL invalide")
elif url in st.session_state["urls"] :
st.error("URL déjà ajoutée")
else:
if scraping_option == "Analyse profonde":
with st.spinner("Collecte des données..."):
docs = get_docs_from_website_fc([url],fire_crawl_api_key)
if docs is None:
st.warning("Erreur lors de la collecte des données, 2eme essai avec collecte rapide...")
with st.spinner("2eme essai, collecte rapide..."):
docs = get_docs_from_website([url])
if scraping_option == "Analyse rapide":
with st.spinner("Collecte des données..."):
docs = get_docs_from_website([url])
if docs is None:
st.error("Erreur lors de la collecte des données, URL unvalide")
st.session_state["latest_doc"] = ""
else:
# Création de l'expander
st.session_state["latest_doc"] = docs
with st.spinner("Processing..."):
#handle the extraction
input_variables = {"BRAND_NAME": brand_name, "BRAND_DESCRIPTION": ""}
partie_prenante = extract_pp(docs, input_variables)
if "444" in partie_prenante: #444 is the code for no brand found , chosen
st.session_state["not_pp"] = "444"
elif "445" in partie_prenante: #445 is the code for no website found with the given url
st.error("Aucun site web trouvé avec l'url donnée")
st.session_state["not_pp"] = ""
else:
st.session_state["not_pp"] = ""
partie_prenante = sorted(partie_prenante)
st.session_state["urls"].append(url)
add_pp(partie_prenante)
# alphabet = [ pp[0] for pp in partie_prenante]
# pouvoir = [ 50 for _ in range(len(partie_prenante))]
# df = pd.DataFrame({'partie_prenante': partie_prenante, 'pouvoir': pouvoir, 'code couleur': partie_prenante})
# st.write(df)
# c = (
# alt.Chart(df)
# .mark_circle(size=300)
# .encode(x="partie_prenante", y=alt.Y("pouvoir",scale=alt.Scale(domain=[0,100])), color="code couleur")
# )
# st.subheader("Vertical Slider")
# age = st.slider("How old are you?", 0, 130, 25)
# st.write("I'm ", age, "years old")
# disp_vertical_slider(partie_prenante)
# st.altair_chart(c, use_container_width=True)
if option =="A partir de vos documents entreprise":
uploaded_file = st.file_uploader("Télécharger le fichier PDF", type="pdf")
if uploaded_file is not None:
if st.button("ajouter",key="add_pp_pdf"):
st.session_state["not_pp"] = ""
with st.spinner("Processing..."):
file_name = uploaded_file.name
with open(file_name, mode='wb') as w:
w.write(uploaded_file.getvalue())
pdf = PyPDFLoader(file_name)
text = pdf.load()
st.session_state["latest_doc"] = text
input_variables = {"BRAND_NAME": brand_name, "BRAND_DESCRIPTION": ""}
partie_prenante = extract_pp(text, input_variables)
if "444" in partie_prenante: #444 is the code for no brand found , chosen
st.session_state["not_pp"] = "444"
elif "445" in partie_prenante: #445 is the code for no website found with the given url
st.error("Aucun site web trouvé avec l'url donnée")
st.session_state["not_pp"] = ""
else:
st.session_state["not_pp"] = ""
partie_prenante = sorted(partie_prenante)
st.session_state["urls"].append(file_name)
add_pp(partie_prenante)
if option == "A partir de cartographie existante":
uploaded_file = st.file_uploader("Télécharger le fichier CSV", type="csv")
if uploaded_file is not None:
if st.button("ajouter",key="add_pp_csv"):
file_name = uploaded_file.name
with open(file_name, mode='wb') as w:
w.write(uploaded_file.getvalue())
try:
load_csv(file_name)
brand_name_from_csv = file_name.split("-")[1]
st.session_state["Nom de la marque"] = brand_name_from_csv
except Exception as e:
st.error("Erreur lors de la lecture du fichier")
if st.session_state["not_pp"] == "444":
st.warning("Aucune parties prenantes n'est identifiable sur l'URL fournie. Fournissez une autre URL ou bien cliquez sur le boutton ci-dessous pour un Conseils IA")
if st.button("Conseil IA"):
show_conseil_ia()
#display docs
if st.session_state["latest_doc"] != "":
with st.expander("Cliquez ici pour éditer et voir le document"):
docs = st.session_state["latest_doc"]
cleaned_text = re.sub(r'\n\n+', '\n\n', docs[0].page_content.strip())
text_value = st.text_area("Modifier le texte ci-dessous:", value=cleaned_text, height=300)
if st.button('Sauvegarder',key="save_doc_fake"):
st.success("Texte sauvegardé avec succès!")
display_list_urls()
with st.expander("Liste des parties prenantes"):
add_pp_input_text()
display_list_pps()
test_chart()