import streamlit as st from langchain_core.messages import AIMessage, HumanMessage from langchain_community.chat_models import ChatOpenAI from dotenv import load_dotenv from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from download_chart import construct_plot from langchain_core.runnables import RunnablePassthrough from langchain import hub from langchain_core.prompts.prompt import PromptTemplate from langchain_community.vectorstores import FAISS from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.document_loaders import PyPDFLoader from langchain_experimental.text_splitter import SemanticChunker load_dotenv() def get_docs_from_pdf(file): loader = PyPDFLoader(file) docs = loader.load_and_split() return docs def get_doc_chunks(docs): text_splitter = SemanticChunker(OpenAIEmbeddings(model="text-embedding-3-small")) chunks = text_splitter.split_documents(docs) return chunks def get_vectorstore_from_docs(doc_chunks): embedding = OpenAIEmbeddings(model="text-embedding-3-small") vectorstore = FAISS.from_documents(documents=doc_chunks, embedding=embedding) return vectorstore def get_conversation_chain(vectorstore): llm = ChatOpenAI(model="gpt-4o",temperature=0.5, max_tokens=2048) retriever=vectorstore.as_retriever() prompt = hub.pull("rlm/rag-prompt") # Chain rag_chain = ( {"context": retriever , "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) return rag_chain def create_db(file): # docs = get_docs_from_pdf(file) # doc_chunks = get_doc_chunks(docs) # vectorstore = get_vectorstore_from_docs(doc_chunks) vectorstore = FAISS.load_local(file, OpenAIEmbeddings(model="text-embedding-3-small"),allow_dangerous_deserialization= True) return vectorstore def get_response(chain,user_query, chat_history): template = """ Chat history: {chat_history} User question: {user_question} """ question = ChatPromptTemplate.from_template(template) question = question.format(chat_history=chat_history, user_question=user_query) return chain.stream(question) @st.experimental_dialog("Cast your vote") def vote(item): st.write(f"Why is {item} your favorite?") reason = st.text_input("Because...") if st.button("Submit"): st.rerun() def display_chat_te(): # app config st.title("Chatbot") # session state if "chat_history_te" not in st.session_state: st.session_state.chat_history_te = [ AIMessage(content="Salut, posez-moi vos question sur la transistion ecologique."), ] if "chain" not in st.session_state: db=create_db("./DATA_bziiit/vectorstore_op") chain = get_conversation_chain(db) st.session_state.chain = chain # conversation for message in st.session_state.chat_history_te: if isinstance(message, AIMessage): with st.chat_message("AI"): st.write(message.content) elif isinstance(message, HumanMessage): with st.chat_message("Moi"): st.write(message.content) style = """ """ # Inject the styling code for both elements # st.markdown(style, unsafe_allow_html=True) # # user input # col1 , col2 = st.columns([1,8]) # if col1.button("chatbot"): # vote("chatbot") # with col2: user_query = st.chat_input(placeholder="c'est quoi la transition écologique ?") if user_query is not None and user_query != "": st.session_state.chat_history_te.append(HumanMessage(content=user_query)) with st.chat_message("Moi"): st.markdown(user_query) with st.chat_message("AI"): response = st.write_stream(get_response(st.session_state.chain,user_query, st.session_state.chat_history_te)) st.session_state.chat_history_te.append(AIMessage(content=response))