import streamlit as st import pandas as pd import altair as alt import base64 import pdfkit import io from comparateur import * def load_svg_as_base64(svg_file_path): with open(svg_file_path, "rb") as svg_file: return base64.b64encode(svg_file.read()).decode() def save_pdf(html_content): pdf = pdfkit.from_string(html_content, False) return pdf def display_comparaison_html(value_init, ratio_equivalent, icon, unit): link_url = f"https://impactco2.fr/outils/comparateur?value={value_init}&comparisons=tgv,eauenbouteille,voiturethermique" html = f"""
{unit}
{compare(value_init, ratio_equivalent):.2f} {unit}
""" return html def display_cf_comparison(): svg_file_path = "feuille.svg" svg_base64 = load_svg_as_base64(svg_file_path) html_content = f"""

Votre consommation Carbone

svg

""" serveur_emission = st.session_state['emission'].stop() emission_api = sum([value["el"] for value in st.session_state["partial_emissions"].values()]) total_emission = serveur_emission + emission_api pourcentage_api = emission_api / total_emission pourcentage_serveur = serveur_emission / total_emission html_content += f"
{total_emission*1000:.3f} g eq. CO2
" html_content += f"

Dont :

" html_content += f"

- Empreinte serveur (via CodeCarbon) : {serveur_emission*1000:.3f} g eq. CO2 ({pourcentage_serveur:.2%})

" html_content += f"

- Empreinte IA (via EcoLogits) : {emission_api*1000:.3f} g eq. CO2 ({pourcentage_api:.2%})

" html_content += "

Votre équivalence

" html_content += """
""" html_content += f"""
{display_comparaison_html(total_emission, dict_comparaison_1kgCO2["eau en litre"][0]*1000, dict_comparaison_1kgCO2["eau en litre"][1], "ml")}
{display_comparaison_html(total_emission, dict_comparaison_1kgCO2["tgv en km"][0], dict_comparaison_1kgCO2["tgv en km"][1], "km")}
{display_comparaison_html(total_emission, dict_comparaison_1kgCO2["voiture en km"][0]*1000, dict_comparaison_1kgCO2["voiture en km"][1], "m")}
""" html_content += "

" html_content += f"""

Powered by ADEME

svg

""" #st.markdown(html_content, unsafe_allow_html=True) return html_content def color_scale(val): if val == '-': return 'background-color: white' elif val <= 1: return 'background-color: rgba(0,100,0,0.5)' # dark green with opacity elif val <= 10: return 'background-color: rgba(0,128,0,0.5)' # green with opacity elif val <= 50: return 'background-color: rgba(255,255,0,0.5)' # yellow with opacity elif val <= 100: return 'background-color: rgba(255,165,0,0.5)' # orange with opacity else: return 'background-color: rgba(255,0,0,0.5)' # red with opacity def get_carbon_footprint_html(): html_content = "" html_content += display_cf_comparison() table = get_table_empreintes_detailed() table.replace({0.00: '-'}, inplace=True) styled_df = table[['Consommation Totale']].rename(columns={'Consommation Totale': 'Consommation Cumulée (g eqCo2)'}) styled_df = styled_df.style.applymap(color_scale, subset=['Consommation Cumulée (g eqCo2)']) html_content += """

DÉTAIL PAR TÂCHE

""" html_content += styled_df.to_html() serveur_emission = st.session_state['emission'].stop() emission_api = sum([value["el"] for value in st.session_state["partial_emissions"].values()]) total_emission = serveur_emission + emission_api pourcentage_api = emission_api / total_emission pourcentage_serveur = serveur_emission / total_emission df = pd.DataFrame({"Catégorie": ["Identification + dessin", "IA (extraction pp + dialogue)"], "valeur": [pourcentage_serveur, pourcentage_api]}) base = alt.Chart(df).encode( theta=alt.Theta(field="valeur", type="quantitative", stack=True), color=alt.Color(field="Catégorie", type="nominal") ) pie = base.mark_arc(outerRadius=100) text = base.mark_text(radius=115, fill="black").encode(alt.Text(field="valeur", type="quantitative", format=".2%")) chart = alt.layer(pie, text, data=df).resolve_scale(theta="independent") html_content += """

SYNTHESE (Dialogue IA et non IA)

""" chart.save("chart.png") with open("chart.png", "rb") as image_file: encoded_image = base64.b64encode(image_file.read()).decode() html_content += f'Pie chart' return html_content