import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain_community.embeddings import HuggingFaceInstructEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.chat_models import ChatOpenAI from langchain.llms import HuggingFaceHub from langchain import hub from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough import os def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=500, # the character length of the chunck chunk_overlap=100, # the character length of the overlap between chuncks length_function=len # the length function - in this case, character length (aka the python len() fn.) ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): model_name = "hkunlp/instructor-xl" hf = HuggingFaceInstructEmbeddings(model_name=model_name) vectorstore = FAISS.from_texts(texts=text_chunks, embedding=hf) return vectorstore def get_conversation_chain(vectorstore): llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.2",model_kwargs={"Temperature": 0.5, "MaxTokens": 1024}) retriever=vectorstore.as_retriever() prompt = hub.pull("rlm/rag-prompt") # Chain rag_chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt | llm ) response = rag_chain.invoke("A partir de documents PDF, concernant la transition écologique en France, proposer un plan de transition en fonction de la marque").split("\nAnswer:")[-1] return response def rag_pdf(): load_dotenv() st.header("SUGGESTION POUR PLAN DE TRANSITION DE MARQUE RESPECTANT LES NORMES DE LA RSE") if "conversation" not in st.session_state: st.session_state.conversation = None with st.sidebar: st.subheader("INFOS SUR LA MARQUE") pdf_docs = st.file_uploader("Upload les documents concerant la marque et clique sur process", type="pdf",accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing..."):#loading bar to enhance user experience #get pdf text in raw format raw_text = get_pdf_text(pdf_docs) #get text chunks text_chunks = get_text_chunks(raw_text) #create vectorstore vectorstore = get_vectorstore(text_chunks) #create conversation chain st.session_state.conversation = get_conversation_chain(vectorstore) st.write(st.session_state.conversation)