bzk9x commited on
Commit
6d39cfa
·
verified ·
1 Parent(s): b975606

Update app.py

Browse files

Replace default to gpt2

Files changed (1) hide show
  1. app.py +27 -59
app.py CHANGED
@@ -1,64 +1,32 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
3
+
4
+ # Load the GPT-2 model and tokenizer
5
+ model_name = "gpt2-xl"
6
+ model = GPT2LMHeadModel.from_pretrained(model_name)
7
+ tokenizer = GPT2Tokenizer.from_pretrained(model_name)
8
+
9
+ def generate_text(prompt, max_tokens=100, temperature=0.7):
10
+ input_ids = tokenizer.encode(prompt, return_tensors='pt')
11
+
12
+ # Generate text
13
+ output = model.generate(input_ids, max_length=max_tokens, temperature=temperature, num_return_sequences=1)
14
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
15
+
16
+ return generated_text
17
+
18
+ # Create a Gradio interface
19
+ demo = gr.Interface(
20
+ fn=generate_text,
21
+ inputs=[
22
+ gr.Textbox(label="Input Prompt"),
23
+ gr.Slider(minimum=1, maximum=2048, value=100, step=1, label="Max new tokens"),
24
+ gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  ],
26
+ outputs="text",
27
+ title="GPT-2 Text Generation",
28
+ description="Enter a prompt to generate text using the GPT-2 model."
29
  )
30
 
 
31
  if __name__ == "__main__":
32
+ demo.launch()