bzk9x commited on
Commit
d130a72
1 Parent(s): 0ce2ca6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -14
app.py CHANGED
@@ -2,12 +2,11 @@ import gradio as gr
2
  import numpy as np
3
  import random
4
 
5
- # import spaces #[uncomment to use ZeroGPU]
6
  from diffusers import DiffusionPipeline
7
  import torch
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
 
12
  if torch.cuda.is_available():
13
  torch_dtype = torch.float16
@@ -20,8 +19,6 @@ pipe = pipe.to(device)
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
 
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
  def infer(
26
  prompt,
27
  negative_prompt,
@@ -50,11 +47,10 @@ def infer(
50
 
51
  return image, seed
52
 
53
-
54
  examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
  ]
59
 
60
  css = """
@@ -66,7 +62,7 @@ css = """
66
 
67
  with gr.Blocks(css=css) as demo:
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
 
71
  with gr.Row():
72
  prompt = gr.Text(
@@ -105,7 +101,7 @@ with gr.Blocks(css=css) as demo:
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
  step=32,
108
- value=1024, # Replace with defaults that work for your model
109
  )
110
 
111
  height = gr.Slider(
@@ -113,7 +109,7 @@ with gr.Blocks(css=css) as demo:
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
- value=1024, # Replace with defaults that work for your model
117
  )
118
 
119
  with gr.Row():
@@ -122,7 +118,7 @@ with gr.Blocks(css=css) as demo:
122
  minimum=0.0,
123
  maximum=10.0,
124
  step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
  )
127
 
128
  num_inference_steps = gr.Slider(
@@ -130,7 +126,7 @@ with gr.Blocks(css=css) as demo:
130
  minimum=1,
131
  maximum=50,
132
  step=1,
133
- value=2, # Replace with defaults that work for your model
134
  )
135
 
136
  gr.Examples(examples=examples, inputs=[prompt])
@@ -151,4 +147,4 @@ with gr.Blocks(css=css) as demo:
151
  )
152
 
153
  if __name__ == "__main__":
154
- demo.launch()
 
2
  import numpy as np
3
  import random
4
 
 
5
  from diffusers import DiffusionPipeline
6
  import torch
7
 
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
+ model_repo_id = "stabilityai/sdxl-emoji" # Updated to use the sdxl-emoji model
10
 
11
  if torch.cuda.is_available():
12
  torch_dtype = torch.float16
 
19
  MAX_SEED = np.iinfo(np.int32).max
20
  MAX_IMAGE_SIZE = 1024
21
 
 
 
22
  def infer(
23
  prompt,
24
  negative_prompt,
 
47
 
48
  return image, seed
49
 
 
50
  examples = [
51
+ "Smiling face emoji with heart eyes",
52
+ "Sad face emoji",
53
+ "A cute cat emoji with a playful expression",
54
  ]
55
 
56
  css = """
 
62
 
63
  with gr.Blocks(css=css) as demo:
64
  with gr.Column(elem_id="col-container"):
65
+ gr.Markdown(" # Emoji Generator with Gradio")
66
 
67
  with gr.Row():
68
  prompt = gr.Text(
 
101
  minimum=256,
102
  maximum=MAX_IMAGE_SIZE,
103
  step=32,
104
+ value=512, # Adjusted to a typical emoji size
105
  )
106
 
107
  height = gr.Slider(
 
109
  minimum=256,
110
  maximum=MAX_IMAGE_SIZE,
111
  step=32,
112
+ value=512, # Adjusted to a typical emoji size
113
  )
114
 
115
  with gr.Row():
 
118
  minimum=0.0,
119
  maximum=10.0,
120
  step=0.1,
121
+ value=7.5, # Adjusted for more focused generation
122
  )
123
 
124
  num_inference_steps = gr.Slider(
 
126
  minimum=1,
127
  maximum=50,
128
  step=1,
129
+ value=25, # Adjusted for better quality generation
130
  )
131
 
132
  gr.Examples(examples=examples, inputs=[prompt])
 
147
  )
148
 
149
  if __name__ == "__main__":
150
+ demo.launch()