Spaces:
Runtime error
Runtime error
File size: 1,116 Bytes
806af8f 7d7a273 806af8f 7d7a273 806af8f 7d7a273 806af8f 7d7a273 806af8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
# %% app.ipynb 1
import gradio as gr
from fastai.vision.all import *
# %% app.ipynb 2
learn = load_learner('pets-model.pkl')
labels = learn.dls.vocab
# %% app.ipynb 3
def predict(img):
img = PILImage.create(img)
pred, pred_idx, probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
# %% app.ipynb 4
title = "Pet Breed Classifier"
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
article = "<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
interpretation = 'default'
enable_queue = True
# %% app.ipynb 5
image = gr.inputs.Image(shape=(224,224))
label = gr.outputs.Label(num_top_classes=3)
examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']
# %% app.ipynb 6
intf = gr.Interface(fn=predict, inputs=image, outputs=label, title=title,
description=description, article=article, examples=examples, interpretation=interpretation, enable_queue=enable_queue)
intf.launch(inline=False)
|