Spaces:
Sleeping
Sleeping
# %% app.ipynb 1 | |
import gradio as gr | |
from fastai.vision.all import * | |
# %% app.ipynb 2 | |
learn = load_learner('pets-model.pkl') | |
labels = learn.dls.vocab | |
# %% app.ipynb 3 | |
def predict(img): | |
img = PILImage.create(img) | |
pred, pred_idx, probs = learn.predict(img) | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
# %% app.ipynb 4 | |
title = "Pet Breed Classifier" | |
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." | |
article = "<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>" | |
#interpretation = 'default' | |
interpretation = 'shap' | |
enable_queue = True | |
# %% app.ipynb 5 | |
image = gr.inputs.Image(shape=(224,224)) | |
label = gr.outputs.Label(num_top_classes=3) | |
examples = ['british.jpg', 'newfoundland.jpg', 'shiba.jpg'] | |
# %% app.ipynb 6 | |
intf = gr.Interface(fn=predict, inputs=image, outputs=label, title=title, | |
description=description, article=article, examples=examples, interpretation=interpretation, enable_queue=enable_queue) | |
intf.launch(inline=False) | |