# MIT License # # Copyright (c) 2023 Victor Calderon # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import logging from typing import Dict, Optional from datasets import Dataset from fastapi import Depends, FastAPI from fastapi.responses import RedirectResponse from huggingface_hub import hf_hub_download from pydantic import BaseModel from src.classes import hugging_face_utils as hf from src.classes import semantic_search_engine as ss from src.utils import default_variables as dv import os from pathlib import Path logger = logging.getLogger(__name__) logging.basicConfig( level=logging.INFO, format="%(asctime)s [%(levelname)s]: %(message)s", ) logger.setLevel(logging.INFO) # ------------------------------- VARIABLES ----------------------------------- APP_TITLE = "Cicero LLM Synthesizer" APP_DESCRIPTION = f""" The '{APP_TITLE}'is an app that will identify the top-N articles from the Cicero database that are most similar to the user's input query. """ APP_VERSION = "0.1" # ----------------------------- APP-SPECIFIC ---------------------------------- # Defining the appliation value app = FastAPI( title=APP_TITLE, description=APP_DESCRIPTION, version=APP_VERSION, ) # -------------------------------- CLASSES ------------------------------------ # Creating directory cache_dir = Path(".").resolve().joinpath("cache") cache_dir.mkdir(exist_ok=True,parents=True,) os.environ['SENTENCE_TRANSFORMERS_HOME'] = str(cache_dir) class QueryParams(BaseModel): input_query: str number_articles: Optional[int] = 5 # ------------------------------- FUNCTIONS ----------------------------------- def download_dataset_and_faiss_index() -> Dataset: """ Function to download the corresponding dataset and the FAISS index from HuggingFace. Returns ------------- dataset_with_faiss_index : datasets.Dataset Dataset from HuggingFace with the FAISS index loaded. """ # --- Initializing HuggingFace API # Object for interacting with HuggingFace hf_obj = hf.HuggingFaceHelper() # Defining variable names for each of the objects faiss_index_name = f"{dv.faiss_index_name}.faiss" dataset_name = dv.dataset_faiss_embeddings_name username = hf_obj.username repository_name = dv.hugging_face_repository_name repository_id = f"{username}/{repository_name}" repository_type = "dataset" split_type = "train" # --- Downloading FAISS Index faiss_index_local_path = hf_hub_download( repo_id=repository_id, filename=faiss_index_name, repo_type=repository_type, token=hf_obj.api.token, ) # --- Downloading Dataset dataset_obj = hf_obj.get_dataset_from_hub( dataset_name=dataset_name, username=username, split=split_type, ) # --- Adding FAISS index to the dataset dataset_obj.load_faiss_index( index_name=dv.embeddings_colname, file=faiss_index_local_path, ) return dataset_obj def run_semantic_search_task(query: str, number_articles: int) -> Dict: """ Function to run semantic search on an input query. It will return a set of 'Top-N' articles that are most similar to the input query. Parameters ------------ query : str Input query to use when running the Semantic Search Engine. number_articles : int Number of articles to return from the Semantic Search. Returns ---------- ranked_results : dict Dictionary containing the ranked results from the Semantic Search Engine. """ # --- Extracting dataset with FAISS index corpus_dataset_with_faiss_index = download_dataset_and_faiss_index() # --- Initializing Semantic Search Engine semantic_search_obj = ss.SemanticSearchEngine( corpus_dataset_with_faiss_index=corpus_dataset_with_faiss_index ) # --- Running search on Top-N results return semantic_search_obj.run_semantic_search( query=query, top_n=number_articles, ) # -------------------------------- ROUTES ------------------------------------- @app.get("/", include_in_schema=False) async def docs_redirect(): return RedirectResponse(url="/docs") # ---- Semantic Search @app.post("/predict") async def run_semantic_search(query_params: QueryParams = Depends()): """ Function to run semantic search on the an input query. Parameters -------------- query : str Input query to use when running the Semantic Search Engine. number_articles : int Number of articles to return from the Semantic Search. """ return run_semantic_search_task( query=query_params.input_query, number_articles=query_params.number_articles, )