|
import os
|
|
import re
|
|
from typing import Dict, List
|
|
import json
|
|
|
|
import torch
|
|
import numpy as np
|
|
import random
|
|
from PIL import Image
|
|
from torchvision import transforms
|
|
from transformers import AutoTokenizer
|
|
from huggingface_hub import snapshot_download
|
|
|
|
from OmniGen.utils import (
|
|
create_logger,
|
|
update_ema,
|
|
requires_grad,
|
|
center_crop_arr,
|
|
crop_arr,
|
|
)
|
|
|
|
|
|
|
|
|
|
class OmniGenProcessor:
|
|
def __init__(self,
|
|
text_tokenizer,
|
|
max_image_size: int=1024):
|
|
self.text_tokenizer = text_tokenizer
|
|
self.max_image_size = max_image_size
|
|
|
|
self.image_transform = transforms.Compose([
|
|
transforms.Lambda(lambda pil_image: crop_arr(pil_image, max_image_size)),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
|
])
|
|
|
|
self.collator = OmniGenCollator()
|
|
self.separate_collator = OmniGenSeparateCollator()
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, model_name):
|
|
if not os.path.exists(model_name):
|
|
cache_folder = os.getenv('HF_HUB_CACHE')
|
|
model_name = snapshot_download(repo_id=model_name,
|
|
cache_dir=cache_folder,
|
|
allow_patterns="*.json")
|
|
text_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
return cls(text_tokenizer)
|
|
|
|
|
|
def process_image(self, image):
|
|
image = Image.open(image).convert('RGB')
|
|
return self.image_transform(image)
|
|
|
|
def process_multi_modal_prompt(self, text, input_images):
|
|
text = self.add_prefix_instruction(text)
|
|
if input_images is None or len(input_images) == 0:
|
|
model_inputs = self.text_tokenizer(text)
|
|
return {"input_ids": model_inputs.input_ids, "pixel_values": None, "image_sizes": None}
|
|
|
|
pattern = r"<\|image_\d+\|>"
|
|
prompt_chunks = [self.text_tokenizer(chunk).input_ids for chunk in re.split(pattern, text)]
|
|
|
|
for i in range(1, len(prompt_chunks)):
|
|
if prompt_chunks[i][0] == 1:
|
|
prompt_chunks[i] = prompt_chunks[i][1:]
|
|
|
|
image_tags = re.findall(pattern, text)
|
|
image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags]
|
|
|
|
unique_image_ids = sorted(list(set(image_ids)))
|
|
assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}"
|
|
|
|
assert len(unique_image_ids) == len(input_images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(input_images)} images"
|
|
|
|
input_images = [input_images[x-1] for x in image_ids]
|
|
|
|
all_input_ids = []
|
|
img_inx = []
|
|
idx = 0
|
|
for i in range(len(prompt_chunks)):
|
|
all_input_ids.extend(prompt_chunks[i])
|
|
if i != len(prompt_chunks) -1:
|
|
start_inx = len(all_input_ids)
|
|
size = input_images[i].size(-2) * input_images[i].size(-1) // 16 // 16
|
|
img_inx.append([start_inx, start_inx+size])
|
|
all_input_ids.extend([0]*size)
|
|
|
|
return {"input_ids": all_input_ids, "pixel_values": input_images, "image_sizes": img_inx}
|
|
|
|
|
|
def add_prefix_instruction(self, prompt):
|
|
user_prompt = '<|user|>\n'
|
|
generation_prompt = 'Generate an image according to the following instructions\n'
|
|
assistant_prompt = '<|assistant|>\n<|diffusion|>'
|
|
prompt_suffix = "<|end|>\n"
|
|
prompt = f"{user_prompt}{generation_prompt}{prompt}{prompt_suffix}{assistant_prompt}"
|
|
return prompt
|
|
|
|
|
|
def __call__(self,
|
|
instructions: List[str],
|
|
input_images: List[List[str]] = None,
|
|
height: int = 1024,
|
|
width: int = 1024,
|
|
negative_prompt: str = "low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers.",
|
|
use_img_cfg: bool = True,
|
|
separate_cfg_input: bool = False,
|
|
use_input_image_size_as_output: bool=False,
|
|
) -> Dict:
|
|
|
|
if input_images is None:
|
|
use_img_cfg = False
|
|
if isinstance(instructions, str):
|
|
instructions = [instructions]
|
|
input_images = [input_images]
|
|
|
|
input_data = []
|
|
for i in range(len(instructions)):
|
|
cur_instruction = instructions[i]
|
|
cur_input_images = None if input_images is None else input_images[i]
|
|
if cur_input_images is not None and len(cur_input_images) > 0:
|
|
cur_input_images = [self.process_image(x) for x in cur_input_images]
|
|
else:
|
|
cur_input_images = None
|
|
assert "<img><|image_1|></img>" not in cur_instruction
|
|
|
|
mllm_input = self.process_multi_modal_prompt(cur_instruction, cur_input_images)
|
|
|
|
|
|
neg_mllm_input, img_cfg_mllm_input = None, None
|
|
neg_mllm_input = self.process_multi_modal_prompt(negative_prompt, None)
|
|
if use_img_cfg:
|
|
if cur_input_images is not None and len(cur_input_images) >= 1:
|
|
img_cfg_prompt = [f"<img><|image_{i+1}|></img>" for i in range(len(cur_input_images))]
|
|
img_cfg_mllm_input = self.process_multi_modal_prompt(" ".join(img_cfg_prompt), cur_input_images)
|
|
else:
|
|
img_cfg_mllm_input = neg_mllm_input
|
|
|
|
if use_input_image_size_as_output:
|
|
input_data.append((mllm_input, neg_mllm_input, img_cfg_mllm_input, [mllm_input['pixel_values'][0].size(-2), mllm_input['pixel_values'][0].size(-1)]))
|
|
else:
|
|
input_data.append((mllm_input, neg_mllm_input, img_cfg_mllm_input, [height, width]))
|
|
|
|
if separate_cfg_input:
|
|
return self.separate_collator(input_data)
|
|
return self.collator(input_data)
|
|
|
|
|
|
|
|
|
|
class OmniGenCollator:
|
|
def __init__(self, pad_token_id=2, hidden_size=3072):
|
|
self.pad_token_id = pad_token_id
|
|
self.hidden_size = hidden_size
|
|
|
|
def create_position(self, attention_mask, num_tokens_for_output_images):
|
|
position_ids = []
|
|
text_length = attention_mask.size(-1)
|
|
img_length = max(num_tokens_for_output_images)
|
|
for mask in attention_mask:
|
|
temp_l = torch.sum(mask)
|
|
temp_position = [0]*(text_length-temp_l) + [i for i in range(temp_l+img_length+1)]
|
|
position_ids.append(temp_position)
|
|
return torch.LongTensor(position_ids)
|
|
|
|
def create_mask(self, attention_mask, num_tokens_for_output_images):
|
|
extended_mask = []
|
|
padding_images = []
|
|
text_length = attention_mask.size(-1)
|
|
img_length = max(num_tokens_for_output_images)
|
|
seq_len = text_length + img_length + 1
|
|
inx = 0
|
|
for mask in attention_mask:
|
|
temp_l = torch.sum(mask)
|
|
pad_l = text_length - temp_l
|
|
|
|
temp_mask = torch.tril(torch.ones(size=(temp_l+1, temp_l+1)))
|
|
|
|
image_mask = torch.zeros(size=(temp_l+1, img_length))
|
|
temp_mask = torch.cat([temp_mask, image_mask], dim=-1)
|
|
|
|
image_mask = torch.ones(size=(img_length, temp_l+img_length+1))
|
|
temp_mask = torch.cat([temp_mask, image_mask], dim=0)
|
|
|
|
if pad_l > 0:
|
|
pad_mask = torch.zeros(size=(temp_l+1+img_length, pad_l))
|
|
temp_mask = torch.cat([pad_mask, temp_mask], dim=-1)
|
|
|
|
pad_mask = torch.ones(size=(pad_l, seq_len))
|
|
temp_mask = torch.cat([pad_mask, temp_mask], dim=0)
|
|
|
|
true_img_length = num_tokens_for_output_images[inx]
|
|
pad_img_length = img_length - true_img_length
|
|
if pad_img_length > 0:
|
|
temp_mask[:, -pad_img_length:] = 0
|
|
temp_padding_imgs = torch.zeros(size=(1, pad_img_length, self.hidden_size))
|
|
else:
|
|
temp_padding_imgs = None
|
|
|
|
extended_mask.append(temp_mask.unsqueeze(0))
|
|
padding_images.append(temp_padding_imgs)
|
|
inx += 1
|
|
return torch.cat(extended_mask, dim=0), padding_images
|
|
|
|
def adjust_attention_for_input_images(self, attention_mask, image_sizes):
|
|
for b_inx in image_sizes.keys():
|
|
for start_inx, end_inx in image_sizes[b_inx]:
|
|
attention_mask[b_inx][start_inx:end_inx, start_inx:end_inx] = 1
|
|
|
|
return attention_mask
|
|
|
|
def pad_input_ids(self, input_ids, image_sizes):
|
|
max_l = max([len(x) for x in input_ids])
|
|
padded_ids = []
|
|
attention_mask = []
|
|
new_image_sizes = []
|
|
|
|
for i in range(len(input_ids)):
|
|
temp_ids = input_ids[i]
|
|
temp_l = len(temp_ids)
|
|
pad_l = max_l - temp_l
|
|
if pad_l == 0:
|
|
attention_mask.append([1]*max_l)
|
|
padded_ids.append(temp_ids)
|
|
else:
|
|
attention_mask.append([0]*pad_l+[1]*temp_l)
|
|
padded_ids.append([self.pad_token_id]*pad_l+temp_ids)
|
|
|
|
if i in image_sizes:
|
|
new_inx = []
|
|
for old_inx in image_sizes[i]:
|
|
new_inx.append([x+pad_l for x in old_inx])
|
|
image_sizes[i] = new_inx
|
|
|
|
return torch.LongTensor(padded_ids), torch.LongTensor(attention_mask), image_sizes
|
|
|
|
|
|
def process_mllm_input(self, mllm_inputs, target_img_size):
|
|
num_tokens_for_output_images = []
|
|
for img_size in target_img_size:
|
|
num_tokens_for_output_images.append(img_size[0]*img_size[1]//16//16)
|
|
|
|
pixel_values, image_sizes = [], {}
|
|
b_inx = 0
|
|
for x in mllm_inputs:
|
|
if x['pixel_values'] is not None:
|
|
pixel_values.extend(x['pixel_values'])
|
|
for size in x['image_sizes']:
|
|
if b_inx not in image_sizes:
|
|
image_sizes[b_inx] = [size]
|
|
else:
|
|
image_sizes[b_inx].append(size)
|
|
b_inx += 1
|
|
pixel_values = [x.unsqueeze(0) for x in pixel_values]
|
|
|
|
|
|
input_ids = [x['input_ids'] for x in mllm_inputs]
|
|
padded_input_ids, attention_mask, image_sizes = self.pad_input_ids(input_ids, image_sizes)
|
|
position_ids = self.create_position(attention_mask, num_tokens_for_output_images)
|
|
attention_mask, padding_images = self.create_mask(attention_mask, num_tokens_for_output_images)
|
|
attention_mask = self.adjust_attention_for_input_images(attention_mask, image_sizes)
|
|
|
|
return padded_input_ids, position_ids, attention_mask, padding_images, pixel_values, image_sizes
|
|
|
|
|
|
def __call__(self, features):
|
|
mllm_inputs = [f[0] for f in features]
|
|
cfg_mllm_inputs = [f[1] for f in features]
|
|
img_cfg_mllm_input = [f[2] for f in features]
|
|
target_img_size = [f[3] for f in features]
|
|
|
|
|
|
if img_cfg_mllm_input[0] is not None:
|
|
mllm_inputs = mllm_inputs + cfg_mllm_inputs + img_cfg_mllm_input
|
|
target_img_size = target_img_size + target_img_size + target_img_size
|
|
else:
|
|
mllm_inputs = mllm_inputs + cfg_mllm_inputs
|
|
target_img_size = target_img_size + target_img_size
|
|
|
|
|
|
all_padded_input_ids, all_position_ids, all_attention_mask, all_padding_images, all_pixel_values, all_image_sizes = self.process_mllm_input(mllm_inputs, target_img_size)
|
|
|
|
data = {"input_ids": all_padded_input_ids,
|
|
"attention_mask": all_attention_mask,
|
|
"position_ids": all_position_ids,
|
|
"input_pixel_values": all_pixel_values,
|
|
"input_image_sizes": all_image_sizes,
|
|
"padding_images": all_padding_images,
|
|
}
|
|
return data
|
|
|
|
|
|
class OmniGenSeparateCollator(OmniGenCollator):
|
|
def __call__(self, features):
|
|
mllm_inputs = [f[0] for f in features]
|
|
cfg_mllm_inputs = [f[1] for f in features]
|
|
img_cfg_mllm_input = [f[2] for f in features]
|
|
target_img_size = [f[3] for f in features]
|
|
|
|
all_padded_input_ids, all_attention_mask, all_position_ids, all_pixel_values, all_image_sizes, all_padding_images = [], [], [], [], [], []
|
|
|
|
|
|
padded_input_ids, position_ids, attention_mask, padding_images, pixel_values, image_sizes = self.process_mllm_input(mllm_inputs, target_img_size)
|
|
all_padded_input_ids.append(padded_input_ids)
|
|
all_attention_mask.append(attention_mask)
|
|
all_position_ids.append(position_ids)
|
|
all_pixel_values.append(pixel_values)
|
|
all_image_sizes.append(image_sizes)
|
|
all_padding_images.append(padding_images)
|
|
|
|
if cfg_mllm_inputs[0] is not None:
|
|
padded_input_ids, position_ids, attention_mask, padding_images, pixel_values, image_sizes = self.process_mllm_input(cfg_mllm_inputs, target_img_size)
|
|
all_padded_input_ids.append(padded_input_ids)
|
|
all_attention_mask.append(attention_mask)
|
|
all_position_ids.append(position_ids)
|
|
all_pixel_values.append(pixel_values)
|
|
all_image_sizes.append(image_sizes)
|
|
all_padding_images.append(padding_images)
|
|
if img_cfg_mllm_input[0] is not None:
|
|
padded_input_ids, position_ids, attention_mask, padding_images, pixel_values, image_sizes = self.process_mllm_input(img_cfg_mllm_input, target_img_size)
|
|
all_padded_input_ids.append(padded_input_ids)
|
|
all_attention_mask.append(attention_mask)
|
|
all_position_ids.append(position_ids)
|
|
all_pixel_values.append(pixel_values)
|
|
all_image_sizes.append(image_sizes)
|
|
all_padding_images.append(padding_images)
|
|
|
|
data = {"input_ids": all_padded_input_ids,
|
|
"attention_mask": all_attention_mask,
|
|
"position_ids": all_position_ids,
|
|
"input_pixel_values": all_pixel_values,
|
|
"input_image_sizes": all_image_sizes,
|
|
"padding_images": all_padding_images,
|
|
}
|
|
return data
|
|
|