import subprocess import os # set CUDA_HOME os.environ["CUDA_HOME"] = "/usr/local/cuda-11.8/" subprocess.run(['pip', 'install', '-e', 'GroundingDINO']) os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth") os.system("wget https://huggingface.co/spaces/mrtlive/segment-anything-model/resolve/main/sam_vit_h_4b8939.pth") import gradio as gr from dino_sam import sam_dino_vid CSV_PATH = "" VID_PATH = "" def run_sam_dino(input_vid, grounding_caption, box_threshold, text_threshold, fps_processed, video_options): csv_path, vid_path = sam_dino_vid(input_vid, grounding_caption, box_threshold, text_threshold, fps_processed, video_options) global CSV_PATH CSV_PATH = csv_path global VID_PATH VID_PATH = vid_path return vid_path def vid_download(): """ """ print(CSV_PATH, VID_PATH) return [CSV_PATH, VID_PATH] with gr.Blocks() as demo: gr.HTML( """

🦍 Primate Detection

""" ) gr.HTML( """ The csv contains frame numbers and timestamps, bounding box coordinates, and number of detections per frame.

""" ) with gr.Row(): with gr.Column(): input = gr.Video(label="Input Video", interactive=True) grounding_caption = gr.Textbox(label="What do you want to detect?") with gr.Accordion("Advanced Options", open=False): box_threshold = gr.Slider( label="Box Threshold", info="Adjust the threshold to change the sensitivity of the model, lower thresholds being more sensitive.", minimum=0.0, maximum=1.0, value=0.25, step=0.01 ) text_threshold = gr.Slider( label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.01 ) fps_processed = gr.Slider( label="Frame Detection Rate", info="Adjust the frame detection rate. I.e. a value of 120 will run detection every 120 frames, a value of 1 will run detection on every frame. Note: the lower the number the slower the processing time.", minimum=1, maximum=120, value=3, step=1) video_options = gr.CheckboxGroup(choices=["Bounding boxes", "Masks"], label="Video Output Options", info="Select the options to display in the output video.", value=["Bounding boxes"], interactive=True) # TODO: Make button visible only after a file has been uploaded run_btn = gr.Button(value="Run Detection", visible=True) with gr.Column(): vid = gr.Video(label="Output Video", height=350, interactive=False, visible=True) # download_btn = gr.Button(value="Generate Download", visible=True) download_file = gr.Files(label="CSV, Video Output", interactive=False) run_btn.click(fn=run_sam_dino, inputs=[input, grounding_caption, box_threshold, text_threshold, fps_processed, video_options], outputs=[vid]) vid.change(fn=vid_download, outputs=download_file) gr.Examples( [["baboon_15s.mp4", "baboon", 0.25, 0.25, 1, ["Bounding boxes", "Masks"]]], inputs = [input, grounding_caption, box_threshold, text_threshold, fps_processed, video_options], outputs = [vid], fn=run_sam_dino, cache_examples=True, label='Example' ) demo.launch(share=False)