import subprocess
import os
import sys
# set CUDA_HOME
os.environ["CUDA_HOME"] = "/usr/local/cuda-11.8/"
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:5000'
subprocess.run(['pip', 'install', '-e', 'GroundingDINO'])
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
sys.path.append(os.path.join(os.getcwd(), "segment_anything"))
import gradio as gr
from dino_sam import sam_dino_vid
CSV_PATH = ""
VID_PATH = ""
def run_sam_dino(input_vid,
grounding_caption,
box_threshold,
text_threshold,
fps_processed,
video_options):
new_input_vid = input_vid.replace(" ", "_")
os.rename(input_vid, new_input_vid)
csv_path, vid_path = sam_dino_vid(new_input_vid, grounding_caption, box_threshold, text_threshold, fps_processed, video_options)
global CSV_PATH
CSV_PATH = csv_path
global VID_PATH
VID_PATH = vid_path
return vid_path
def vid_download():
"""
"""
print(CSV_PATH, VID_PATH)
return [CSV_PATH, VID_PATH]
with gr.Blocks() as demo:
gr.HTML(
"""
🦍 Primate Detection
"""
)
with gr.Row():
with gr.Column():
input = gr.Video(label="Input Video", interactive=True)
grounding_caption = gr.Textbox(label="What do you want to detect?")
with gr.Accordion("Advanced Options", open=False):
box_threshold = gr.Slider(
label="Box Threshold",
info="Adjust the threshold to change the sensitivity of the model, lower thresholds being more sensitive.",
minimum=0.0,
maximum=1.0,
value=0.25,
step=0.01
)
text_threshold = gr.Slider(
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.01
)
fps_processed = gr.Slider(
label="Frame Detection Rate",
info="Adjust the frame detection rate. I.e. a value of 120 will run detection every 120 frames, a value of 1 will run detection on every frame. Note: the lower the number the slower the processing time.",
minimum=1,
maximum=120,
value=30,
step=1)
video_options = gr.CheckboxGroup(choices=["Bounding boxes", "Masks"],
label="Video Output Options",
info="Select the options to display in the output video. Note: if masks are selected, runtime will increase.",
value=["Bounding boxes"],
interactive=True)
# TODO: Make button visible only after a file has been uploaded
run_btn = gr.Button(value="Run Detection", visible=True)
with gr.Column():
vid = gr.Video(label="Output Video", height=350, interactive=False, visible=True)
# download_btn = gr.Button(value="Generate Download", visible=True)
download_file = gr.Files(label="CSV, Video Output", interactive=False)
run_btn.click(fn=run_sam_dino, inputs=[input, grounding_caption, box_threshold, text_threshold, fps_processed, video_options], outputs=[vid])
vid.change(fn=vid_download, outputs=download_file)
gr.Examples(
[["baboon_15s.mp4", "baboon", 0.25, 0.25, 1, ["Bounding boxes", "Masks"]]],
inputs = [input, grounding_caption, box_threshold, text_threshold, fps_processed, video_options],
outputs = [vid],
fn=run_sam_dino,
cache_examples=True,
label='Example'
)
demo.launch(share=False)