Spaces:
Runtime error
Runtime error
import os, shutil, json, requests, random, time, runpod | |
from urllib.parse import urlsplit | |
import torch | |
from PIL import Image | |
import numpy as np | |
import asyncio | |
import execution | |
import server | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
server_instance = server.PromptServer(loop) | |
execution.PromptQueue(server) | |
from nodes import load_custom_node | |
from nodes import NODE_CLASS_MAPPINGS | |
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-CogVideoXWrapper") | |
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-VideoHelperSuite") | |
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-KJNodes") | |
LoadImage = NODE_CLASS_MAPPINGS["LoadImage"]() | |
ImageResizeKJ = NODE_CLASS_MAPPINGS["ImageResizeKJ"]() | |
CogVideoImageEncode = NODE_CLASS_MAPPINGS["CogVideoImageEncode"]() | |
CogVideoLoraSelect = NODE_CLASS_MAPPINGS["CogVideoLoraSelect"]() | |
DownloadAndLoadCogVideoModel = NODE_CLASS_MAPPINGS["DownloadAndLoadCogVideoModel"]() | |
CogVideoTextEncode = NODE_CLASS_MAPPINGS["CogVideoTextEncode"]() | |
CLIPLoader = NODE_CLASS_MAPPINGS["CLIPLoader"]() | |
CogVideoSampler = NODE_CLASS_MAPPINGS["CogVideoSampler"]() | |
CogVideoDecode = NODE_CLASS_MAPPINGS["CogVideoDecode"]() | |
VHS_VideoCombine = NODE_CLASS_MAPPINGS["VHS_VideoCombine"]() | |
with torch.inference_mode(): | |
lora = CogVideoLoraSelect.getlorapath("orbit_left_lora_weights.safetensors", 1.0, fuse_lora=True)[0] | |
pipeline = DownloadAndLoadCogVideoModel.loadmodel("THUDM/CogVideoX-5b-I2V", "bf16", fp8_transformer="disabled", compile="disabled", enable_sequential_cpu_offload=False, lora=lora)[0] | |
clip = CLIPLoader.load_clip("t5xxl_fp16.safetensors", type="sd3")[0] | |
def download_file(url, save_dir, file_name): | |
os.makedirs(save_dir, exist_ok=True) | |
original_file_name = url.split('/')[-1] | |
_, original_file_extension = os.path.splitext(original_file_name) | |
file_path = os.path.join(save_dir, file_name + original_file_extension) | |
response = requests.get(url) | |
response.raise_for_status() | |
with open(file_path, 'wb') as file: | |
file.write(response.content) | |
return file_path | |
def generate(input): | |
values = input["input"] | |
input_image=values['input_image_check'] | |
input_image=download_file(url=input_image, save_dir='/content/ComfyUI/input', file_name='input_image') | |
prompt = values['prompt'] | |
negative_prompt = values['negative_prompt'] | |
seed = values['seed'] | |
steps = values['steps'] | |
cfg = values['cfg'] | |
if seed == 0: | |
random.seed(int(time.time())) | |
seed = random.randint(0, 18446744073709551615) | |
positive = CogVideoTextEncode.process(clip, prompt, strength=1.0, force_offload=True)[0] | |
negative = CogVideoTextEncode.process(clip, negative_prompt, strength=1.0, force_offload=True)[0] | |
image, _ = LoadImage.load_image(input_image) | |
image = ImageResizeKJ.resize(image, width=720, height=480, keep_proportion=False, upscale_method="lanczos", divisible_by=16, crop="center")[0] | |
image_cond_latents = CogVideoImageEncode.encode(pipeline, image, chunk_size=16, enable_tiling=True)[0] | |
samples = CogVideoSampler.process(pipeline, positive, negative, steps, cfg, seed, height=480, width=720, num_frames=49, scheduler="CogVideoXDPMScheduler", denoise_strength=1.0, image_cond_latents=image_cond_latents) | |
frames = CogVideoDecode.decode(samples[0], samples[1], enable_vae_tiling=True, tile_sample_min_height=240, tile_sample_min_width=360, tile_overlap_factor_height=0.2, tile_overlap_factor_width=0.2, auto_tile_size=True)[0] | |
out_video = VHS_VideoCombine.combine_video(images=frames, frame_rate=8, loop_count=0, filename_prefix="CogVideoX-I2V", format="video/h264-mp4", save_output=True) | |
source = out_video["result"][0][1][1] | |
destination = f"/content/ComfyUI/output/cogvideox-5b-i2v-dimensionx-{seed}-tost.mp4" | |
shutil.move(source, destination) | |
result = f"/content/ComfyUI/output/cogvideox-5b-i2v-dimensionx-{seed}-tost.mp4" | |
try: | |
notify_uri = values['notify_uri'] | |
del values['notify_uri'] | |
notify_token = values['notify_token'] | |
del values['notify_token'] | |
discord_id = values['discord_id'] | |
del values['discord_id'] | |
if(discord_id == "discord_id"): | |
discord_id = os.getenv('com_camenduru_discord_id') | |
discord_channel = values['discord_channel'] | |
del values['discord_channel'] | |
if(discord_channel == "discord_channel"): | |
discord_channel = os.getenv('com_camenduru_discord_channel') | |
discord_token = values['discord_token'] | |
del values['discord_token'] | |
if(discord_token == "discord_token"): | |
discord_token = os.getenv('com_camenduru_discord_token') | |
job_id = values['job_id'] | |
del values['job_id'] | |
# default_filename = os.path.basename(result) | |
# with open(result, "rb") as file: | |
# files = {default_filename: file.read()} | |
# payload = {"content": f"{json.dumps(values)} <@{discord_id}>"} | |
# response = requests.post( | |
# f"https://discord.com/api/v9/channels/{discord_channel}/messages", | |
# data=payload, | |
# headers={"Authorization": f"Bot {discord_token}"}, | |
# files=files | |
# ) | |
# response.raise_for_status() | |
# result_url = response.json()['attachments'][0]['url'] | |
with open(result, 'rb') as file: | |
response = requests.post("https://upload.tost.ai/api/v1", files={'file': file}) | |
response.raise_for_status() | |
result_url = response.text | |
notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"} | |
web_notify_uri = os.getenv('com_camenduru_web_notify_uri') | |
web_notify_token = os.getenv('com_camenduru_web_notify_token') | |
if(notify_uri == "notify_uri"): | |
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
else: | |
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) | |
return {"jobId": job_id, "result": result_url, "status": "DONE"} | |
except Exception as e: | |
error_payload = {"jobId": job_id, "status": "FAILED"} | |
try: | |
if(notify_uri == "notify_uri"): | |
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
else: | |
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) | |
except: | |
pass | |
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"} | |
finally: | |
if os.path.exists(result): | |
os.remove(result) | |
if os.path.exists(input_image): | |
os.remove(input_image) | |
runpod.serverless.start({"handler": generate}) |