import os, shutil, json, requests, random, time, runpod from urllib.parse import urlsplit import torch from PIL import Image import numpy as np import asyncio import execution import server loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) server_instance = server.PromptServer(loop) execution.PromptQueue(server) from nodes import load_custom_node from nodes import NODE_CLASS_MAPPINGS load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-CogVideoXWrapper") load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-VideoHelperSuite") load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-KJNodes") LoadImage = NODE_CLASS_MAPPINGS["LoadImage"]() ImageResizeKJ = NODE_CLASS_MAPPINGS["ImageResizeKJ"]() CogVideoImageEncode = NODE_CLASS_MAPPINGS["CogVideoImageEncode"]() CogVideoLoraSelect = NODE_CLASS_MAPPINGS["CogVideoLoraSelect"]() DownloadAndLoadCogVideoModel = NODE_CLASS_MAPPINGS["DownloadAndLoadCogVideoModel"]() CogVideoTextEncode = NODE_CLASS_MAPPINGS["CogVideoTextEncode"]() CLIPLoader = NODE_CLASS_MAPPINGS["CLIPLoader"]() CogVideoSampler = NODE_CLASS_MAPPINGS["CogVideoSampler"]() CogVideoDecode = NODE_CLASS_MAPPINGS["CogVideoDecode"]() VHS_VideoCombine = NODE_CLASS_MAPPINGS["VHS_VideoCombine"]() with torch.inference_mode(): lora = CogVideoLoraSelect.getlorapath("orbit_left_lora_weights.safetensors", 1.0, fuse_lora=True)[0] pipeline = DownloadAndLoadCogVideoModel.loadmodel("THUDM/CogVideoX-5b-I2V", "bf16", fp8_transformer="disabled", compile="disabled", enable_sequential_cpu_offload=False, lora=lora)[0] clip = CLIPLoader.load_clip("t5xxl_fp16.safetensors", type="sd3")[0] def download_file(url, save_dir, file_name): os.makedirs(save_dir, exist_ok=True) original_file_name = url.split('/')[-1] _, original_file_extension = os.path.splitext(original_file_name) file_path = os.path.join(save_dir, file_name + original_file_extension) response = requests.get(url) response.raise_for_status() with open(file_path, 'wb') as file: file.write(response.content) return file_path @torch.inference_mode() def generate(input): values = input["input"] input_image=values['input_image_check'] input_image=download_file(url=input_image, save_dir='/content/ComfyUI/input', file_name='input_image') prompt = values['prompt'] negative_prompt = values['negative_prompt'] seed = values['seed'] steps = values['steps'] cfg = values['cfg'] if seed == 0: random.seed(int(time.time())) seed = random.randint(0, 18446744073709551615) positive = CogVideoTextEncode.process(clip, prompt, strength=1.0, force_offload=True)[0] negative = CogVideoTextEncode.process(clip, negative_prompt, strength=1.0, force_offload=True)[0] image, _ = LoadImage.load_image(input_image) image = ImageResizeKJ.resize(image, width=720, height=480, keep_proportion=False, upscale_method="lanczos", divisible_by=16, crop="center")[0] image_cond_latents = CogVideoImageEncode.encode(pipeline, image, chunk_size=16, enable_tiling=True)[0] samples = CogVideoSampler.process(pipeline, positive, negative, steps, cfg, seed, height=480, width=720, num_frames=49, scheduler="CogVideoXDPMScheduler", denoise_strength=1.0, image_cond_latents=image_cond_latents) frames = CogVideoDecode.decode(samples[0], samples[1], enable_vae_tiling=True, tile_sample_min_height=240, tile_sample_min_width=360, tile_overlap_factor_height=0.2, tile_overlap_factor_width=0.2, auto_tile_size=True)[0] out_video = VHS_VideoCombine.combine_video(images=frames, frame_rate=8, loop_count=0, filename_prefix="CogVideoX-I2V", format="video/h264-mp4", save_output=True) source = out_video["result"][0][1][1] destination = f"/content/ComfyUI/output/cogvideox-5b-i2v-dimensionx-{seed}-tost.mp4" shutil.move(source, destination) result = f"/content/ComfyUI/output/cogvideox-5b-i2v-dimensionx-{seed}-tost.mp4" try: notify_uri = values['notify_uri'] del values['notify_uri'] notify_token = values['notify_token'] del values['notify_token'] discord_id = values['discord_id'] del values['discord_id'] if(discord_id == "discord_id"): discord_id = os.getenv('com_camenduru_discord_id') discord_channel = values['discord_channel'] del values['discord_channel'] if(discord_channel == "discord_channel"): discord_channel = os.getenv('com_camenduru_discord_channel') discord_token = values['discord_token'] del values['discord_token'] if(discord_token == "discord_token"): discord_token = os.getenv('com_camenduru_discord_token') job_id = values['job_id'] del values['job_id'] # default_filename = os.path.basename(result) # with open(result, "rb") as file: # files = {default_filename: file.read()} # payload = {"content": f"{json.dumps(values)} <@{discord_id}>"} # response = requests.post( # f"https://discord.com/api/v9/channels/{discord_channel}/messages", # data=payload, # headers={"Authorization": f"Bot {discord_token}"}, # files=files # ) # response.raise_for_status() # result_url = response.json()['attachments'][0]['url'] with open(result, 'rb') as file: response = requests.post("https://upload.tost.ai/api/v1", files={'file': file}) response.raise_for_status() result_url = response.text notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"} web_notify_uri = os.getenv('com_camenduru_web_notify_uri') web_notify_token = os.getenv('com_camenduru_web_notify_token') if(notify_uri == "notify_uri"): requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) else: requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) return {"jobId": job_id, "result": result_url, "status": "DONE"} except Exception as e: error_payload = {"jobId": job_id, "status": "FAILED"} try: if(notify_uri == "notify_uri"): requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) else: requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) except: pass return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"} finally: if os.path.exists(result): os.remove(result) if os.path.exists(input_image): os.remove(input_image) runpod.serverless.start({"handler": generate})