File size: 7,275 Bytes
154cb41
f246c63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c43180
 
 
 
 
 
 
 
 
 
 
 
 
 
f246c63
4c43180
f246c63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os, shutil, json, requests, random, time, runpod
from urllib.parse import urlsplit

import torch
from PIL import Image
import numpy as np

import asyncio
import execution
import server
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server)

from nodes import load_custom_node
from nodes import NODE_CLASS_MAPPINGS

load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-CogVideoXWrapper")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-VideoHelperSuite")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-KJNodes")

LoadImage = NODE_CLASS_MAPPINGS["LoadImage"]()
ImageResizeKJ = NODE_CLASS_MAPPINGS["ImageResizeKJ"]()
CogVideoImageEncode = NODE_CLASS_MAPPINGS["CogVideoImageEncode"]()
CogVideoLoraSelect = NODE_CLASS_MAPPINGS["CogVideoLoraSelect"]()
DownloadAndLoadCogVideoModel = NODE_CLASS_MAPPINGS["DownloadAndLoadCogVideoModel"]()
CogVideoTextEncode = NODE_CLASS_MAPPINGS["CogVideoTextEncode"]()
CLIPLoader = NODE_CLASS_MAPPINGS["CLIPLoader"]()
CogVideoSampler = NODE_CLASS_MAPPINGS["CogVideoSampler"]()
CogVideoDecode = NODE_CLASS_MAPPINGS["CogVideoDecode"]()
VHS_VideoCombine = NODE_CLASS_MAPPINGS["VHS_VideoCombine"]()

with torch.inference_mode():
    lora = CogVideoLoraSelect.getlorapath("orbit_up_lora_weights.safetensors", 1.0, fuse_lora=True)[0]
    pipeline = DownloadAndLoadCogVideoModel.loadmodel("THUDM/CogVideoX-5b-I2V", "bf16", fp8_transformer="disabled", compile="disabled", enable_sequential_cpu_offload=False, lora=lora)[0]
    clip = CLIPLoader.load_clip("t5xxl_fp16.safetensors", type="sd3")[0]

def download_file(url, save_dir, file_name):
    os.makedirs(save_dir, exist_ok=True)
    original_file_name = url.split('/')[-1]
    _, original_file_extension = os.path.splitext(original_file_name)
    file_path = os.path.join(save_dir, file_name + original_file_extension)
    response = requests.get(url)
    response.raise_for_status()
    with open(file_path, 'wb') as file:
        file.write(response.content)
    return file_path

@torch.inference_mode()
def generate(input):
    values = input["input"]

    input_image=values['input_image_check']
    input_image=download_file(url=input_image, save_dir='/content/ComfyUI/input', file_name='input_image')
    prompt = values['prompt']
    negative_prompt = values['negative_prompt']
    seed = values['seed']
    steps = values['steps']
    cfg = values['cfg']

    if seed == 0:
        random.seed(int(time.time()))
        seed = random.randint(0, 18446744073709551615)

    positive = CogVideoTextEncode.process(clip, prompt, strength=1.0, force_offload=True)[0]
    negative = CogVideoTextEncode.process(clip, negative_prompt, strength=1.0, force_offload=True)[0]

    image, _ = LoadImage.load_image(input_image)
    image = ImageResizeKJ.resize(image, width=720, height=480, keep_proportion=False, upscale_method="lanczos", divisible_by=16, crop="center")[0]
    image_cond_latents = CogVideoImageEncode.encode(pipeline, image, chunk_size=16, enable_tiling=True)[0]
    samples = CogVideoSampler.process(pipeline, positive, negative, steps, cfg, seed, height=480, width=720, num_frames=49, scheduler="CogVideoXDPMScheduler", denoise_strength=1.0, image_cond_latents=image_cond_latents)
    frames = CogVideoDecode.decode(samples[0], samples[1], enable_vae_tiling=True, tile_sample_min_height=240, tile_sample_min_width=360, tile_overlap_factor_height=0.2, tile_overlap_factor_width=0.2, auto_tile_size=True)[0]

    out_video = VHS_VideoCombine.combine_video(images=frames, frame_rate=8, loop_count=0, filename_prefix="CogVideoX-I2V", format="video/h264-mp4", save_output=True)
    source = out_video["result"][0][1][1]
    destination = f"/content/ComfyUI/output/cogvideox-5b-i2v-dimensionx-{seed}-tost.mp4"
    shutil.move(source, destination)

    result = f"/content/ComfyUI/output/cogvideox-5b-i2v-dimensionx-{seed}-tost.mp4"
    try:
        notify_uri = values['notify_uri']
        del values['notify_uri']
        notify_token = values['notify_token']
        del values['notify_token']
        discord_id = values['discord_id']
        del values['discord_id']
        if(discord_id == "discord_id"):
            discord_id = os.getenv('com_camenduru_discord_id')
        discord_channel = values['discord_channel']
        del values['discord_channel']
        if(discord_channel == "discord_channel"):
            discord_channel = os.getenv('com_camenduru_discord_channel')
        discord_token = values['discord_token']
        del values['discord_token']
        if(discord_token == "discord_token"):
            discord_token = os.getenv('com_camenduru_discord_token')
        job_id = values['job_id']
        del values['job_id']
        # default_filename = os.path.basename(result)
        # with open(result, "rb") as file:
        #     files = {default_filename: file.read()}
        # payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
        # response = requests.post(
        #     f"https://discord.com/api/v9/channels/{discord_channel}/messages",
        #     data=payload,
        #     headers={"Authorization": f"Bot {discord_token}"},
        #     files=files
        # )
        # response.raise_for_status()
        # result_url = response.json()['attachments'][0]['url']
        with open(result, 'rb') as file:
            response = requests.post("https://upload.tost.ai/api/v1", files={'file': file})
        response.raise_for_status()
        result_url = response.text
        notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"}
        web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
        web_notify_token = os.getenv('com_camenduru_web_notify_token')
        if(notify_uri == "notify_uri"):
            requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
        else:
            requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
            requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
        return {"jobId": job_id, "result": result_url, "status": "DONE"}
    except Exception as e:
        error_payload = {"jobId": job_id, "status": "FAILED"}
        try:
            if(notify_uri == "notify_uri"):
                requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
            else:
                requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
                requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
        except:
            pass
        return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
    finally:
        if os.path.exists(result):
            os.remove(result)
        if os.path.exists(input_image):
            os.remove(input_image)

runpod.serverless.start({"handler": generate})