Spaces:
Runtime error
Runtime error
File size: 7,275 Bytes
154cb41 f246c63 4c43180 f246c63 4c43180 f246c63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import os, shutil, json, requests, random, time, runpod
from urllib.parse import urlsplit
import torch
from PIL import Image
import numpy as np
import asyncio
import execution
import server
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server)
from nodes import load_custom_node
from nodes import NODE_CLASS_MAPPINGS
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-CogVideoXWrapper")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-VideoHelperSuite")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-KJNodes")
LoadImage = NODE_CLASS_MAPPINGS["LoadImage"]()
ImageResizeKJ = NODE_CLASS_MAPPINGS["ImageResizeKJ"]()
CogVideoImageEncode = NODE_CLASS_MAPPINGS["CogVideoImageEncode"]()
CogVideoLoraSelect = NODE_CLASS_MAPPINGS["CogVideoLoraSelect"]()
DownloadAndLoadCogVideoModel = NODE_CLASS_MAPPINGS["DownloadAndLoadCogVideoModel"]()
CogVideoTextEncode = NODE_CLASS_MAPPINGS["CogVideoTextEncode"]()
CLIPLoader = NODE_CLASS_MAPPINGS["CLIPLoader"]()
CogVideoSampler = NODE_CLASS_MAPPINGS["CogVideoSampler"]()
CogVideoDecode = NODE_CLASS_MAPPINGS["CogVideoDecode"]()
VHS_VideoCombine = NODE_CLASS_MAPPINGS["VHS_VideoCombine"]()
with torch.inference_mode():
lora = CogVideoLoraSelect.getlorapath("orbit_up_lora_weights.safetensors", 1.0, fuse_lora=True)[0]
pipeline = DownloadAndLoadCogVideoModel.loadmodel("THUDM/CogVideoX-5b-I2V", "bf16", fp8_transformer="disabled", compile="disabled", enable_sequential_cpu_offload=False, lora=lora)[0]
clip = CLIPLoader.load_clip("t5xxl_fp16.safetensors", type="sd3")[0]
def download_file(url, save_dir, file_name):
os.makedirs(save_dir, exist_ok=True)
original_file_name = url.split('/')[-1]
_, original_file_extension = os.path.splitext(original_file_name)
file_path = os.path.join(save_dir, file_name + original_file_extension)
response = requests.get(url)
response.raise_for_status()
with open(file_path, 'wb') as file:
file.write(response.content)
return file_path
@torch.inference_mode()
def generate(input):
values = input["input"]
input_image=values['input_image_check']
input_image=download_file(url=input_image, save_dir='/content/ComfyUI/input', file_name='input_image')
prompt = values['prompt']
negative_prompt = values['negative_prompt']
seed = values['seed']
steps = values['steps']
cfg = values['cfg']
if seed == 0:
random.seed(int(time.time()))
seed = random.randint(0, 18446744073709551615)
positive = CogVideoTextEncode.process(clip, prompt, strength=1.0, force_offload=True)[0]
negative = CogVideoTextEncode.process(clip, negative_prompt, strength=1.0, force_offload=True)[0]
image, _ = LoadImage.load_image(input_image)
image = ImageResizeKJ.resize(image, width=720, height=480, keep_proportion=False, upscale_method="lanczos", divisible_by=16, crop="center")[0]
image_cond_latents = CogVideoImageEncode.encode(pipeline, image, chunk_size=16, enable_tiling=True)[0]
samples = CogVideoSampler.process(pipeline, positive, negative, steps, cfg, seed, height=480, width=720, num_frames=49, scheduler="CogVideoXDPMScheduler", denoise_strength=1.0, image_cond_latents=image_cond_latents)
frames = CogVideoDecode.decode(samples[0], samples[1], enable_vae_tiling=True, tile_sample_min_height=240, tile_sample_min_width=360, tile_overlap_factor_height=0.2, tile_overlap_factor_width=0.2, auto_tile_size=True)[0]
out_video = VHS_VideoCombine.combine_video(images=frames, frame_rate=8, loop_count=0, filename_prefix="CogVideoX-I2V", format="video/h264-mp4", save_output=True)
source = out_video["result"][0][1][1]
destination = f"/content/ComfyUI/output/cogvideox-5b-i2v-dimensionx-{seed}-tost.mp4"
shutil.move(source, destination)
result = f"/content/ComfyUI/output/cogvideox-5b-i2v-dimensionx-{seed}-tost.mp4"
try:
notify_uri = values['notify_uri']
del values['notify_uri']
notify_token = values['notify_token']
del values['notify_token']
discord_id = values['discord_id']
del values['discord_id']
if(discord_id == "discord_id"):
discord_id = os.getenv('com_camenduru_discord_id')
discord_channel = values['discord_channel']
del values['discord_channel']
if(discord_channel == "discord_channel"):
discord_channel = os.getenv('com_camenduru_discord_channel')
discord_token = values['discord_token']
del values['discord_token']
if(discord_token == "discord_token"):
discord_token = os.getenv('com_camenduru_discord_token')
job_id = values['job_id']
del values['job_id']
# default_filename = os.path.basename(result)
# with open(result, "rb") as file:
# files = {default_filename: file.read()}
# payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
# response = requests.post(
# f"https://discord.com/api/v9/channels/{discord_channel}/messages",
# data=payload,
# headers={"Authorization": f"Bot {discord_token}"},
# files=files
# )
# response.raise_for_status()
# result_url = response.json()['attachments'][0]['url']
with open(result, 'rb') as file:
response = requests.post("https://upload.tost.ai/api/v1", files={'file': file})
response.raise_for_status()
result_url = response.text
notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"}
web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
web_notify_token = os.getenv('com_camenduru_web_notify_token')
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
return {"jobId": job_id, "result": result_url, "status": "DONE"}
except Exception as e:
error_payload = {"jobId": job_id, "status": "FAILED"}
try:
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
except:
pass
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
finally:
if os.path.exists(result):
os.remove(result)
if os.path.exists(input_image):
os.remove(input_image)
runpod.serverless.start({"handler": generate}) |