Spaces:
Runtime error
Runtime error
Create worker_runpod.py
Browse files- worker_runpod.py +246 -0
worker_runpod.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from datetime import datetime
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import torch
|
7 |
+
import torchaudio
|
8 |
+
|
9 |
+
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
|
10 |
+
setup_eval_logging)
|
11 |
+
from mmaudio.model.flow_matching import FlowMatching
|
12 |
+
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
13 |
+
from mmaudio.model.sequence_config import SequenceConfig
|
14 |
+
from mmaudio.model.utils.features_utils import FeaturesUtils
|
15 |
+
|
16 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
17 |
+
torch.backends.cudnn.allow_tf32 = True
|
18 |
+
|
19 |
+
log = logging.getLogger()
|
20 |
+
|
21 |
+
device = 'cuda'
|
22 |
+
dtype = torch.bfloat16
|
23 |
+
|
24 |
+
model: ModelConfig = all_model_cfg['large_44k_v2']
|
25 |
+
model.download_if_needed()
|
26 |
+
output_dir = Path('./output/gradio')
|
27 |
+
|
28 |
+
setup_eval_logging()
|
29 |
+
|
30 |
+
|
31 |
+
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
|
32 |
+
seq_cfg = model.seq_cfg
|
33 |
+
|
34 |
+
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval()
|
35 |
+
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
|
36 |
+
log.info(f'Loaded weights from {model.model_path}')
|
37 |
+
|
38 |
+
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
|
39 |
+
synchformer_ckpt=model.synchformer_ckpt,
|
40 |
+
enable_conditions=True,
|
41 |
+
mode=model.mode,
|
42 |
+
bigvgan_vocoder_ckpt=model.bigvgan_16k_path)
|
43 |
+
feature_utils = feature_utils.to(device, dtype).eval()
|
44 |
+
|
45 |
+
return net, feature_utils, seq_cfg
|
46 |
+
|
47 |
+
|
48 |
+
net, feature_utils, seq_cfg = get_model()
|
49 |
+
|
50 |
+
|
51 |
+
@torch.inference_mode()
|
52 |
+
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
|
53 |
+
cfg_strength: float, duration: float):
|
54 |
+
|
55 |
+
rng = torch.Generator(device=device)
|
56 |
+
rng.manual_seed(seed)
|
57 |
+
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
58 |
+
|
59 |
+
clip_frames, sync_frames, duration = load_video(video, duration)
|
60 |
+
clip_frames = clip_frames.unsqueeze(0)
|
61 |
+
sync_frames = sync_frames.unsqueeze(0)
|
62 |
+
seq_cfg.duration = duration
|
63 |
+
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
|
64 |
+
|
65 |
+
audios = generate(clip_frames,
|
66 |
+
sync_frames, [prompt],
|
67 |
+
negative_text=[negative_prompt],
|
68 |
+
feature_utils=feature_utils,
|
69 |
+
net=net,
|
70 |
+
fm=fm,
|
71 |
+
rng=rng,
|
72 |
+
cfg_strength=cfg_strength)
|
73 |
+
audio = audios.float().cpu()[0]
|
74 |
+
|
75 |
+
current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
|
76 |
+
output_dir.mkdir(exist_ok=True, parents=True)
|
77 |
+
video_save_path = output_dir / f'{current_time_string}.mp4'
|
78 |
+
make_video(video,
|
79 |
+
video_save_path,
|
80 |
+
audio,
|
81 |
+
sampling_rate=seq_cfg.sampling_rate,
|
82 |
+
duration_sec=seq_cfg.duration)
|
83 |
+
return video_save_path
|
84 |
+
|
85 |
+
|
86 |
+
@torch.inference_mode()
|
87 |
+
def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float,
|
88 |
+
duration: float):
|
89 |
+
|
90 |
+
rng = torch.Generator(device=device)
|
91 |
+
rng.manual_seed(seed)
|
92 |
+
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
93 |
+
|
94 |
+
clip_frames = sync_frames = None
|
95 |
+
seq_cfg.duration = duration
|
96 |
+
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
|
97 |
+
|
98 |
+
audios = generate(clip_frames,
|
99 |
+
sync_frames, [prompt],
|
100 |
+
negative_text=[negative_prompt],
|
101 |
+
feature_utils=feature_utils,
|
102 |
+
net=net,
|
103 |
+
fm=fm,
|
104 |
+
rng=rng,
|
105 |
+
cfg_strength=cfg_strength)
|
106 |
+
audio = audios.float().cpu()[0]
|
107 |
+
|
108 |
+
current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
|
109 |
+
output_dir.mkdir(exist_ok=True, parents=True)
|
110 |
+
audio_save_path = output_dir / f'{current_time_string}.flac'
|
111 |
+
torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate)
|
112 |
+
return audio_save_path
|
113 |
+
|
114 |
+
|
115 |
+
video_to_audio_tab = gr.Interface(
|
116 |
+
fn=video_to_audio,
|
117 |
+
inputs=[
|
118 |
+
gr.Video(),
|
119 |
+
gr.Text(label='Prompt'),
|
120 |
+
gr.Text(label='Negative prompt', value='music'),
|
121 |
+
gr.Number(label='Seed', value=0, precision=0, minimum=0),
|
122 |
+
gr.Number(label='Num steps', value=25, precision=0, minimum=1),
|
123 |
+
gr.Number(label='Guidance Strength', value=4.5, minimum=1),
|
124 |
+
gr.Number(label='Duration (sec)', value=8, minimum=1),
|
125 |
+
],
|
126 |
+
outputs='playable_video',
|
127 |
+
cache_examples=False,
|
128 |
+
title='MMAudio — Video-to-Audio Synthesis',
|
129 |
+
examples=[
|
130 |
+
[
|
131 |
+
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_nyc.mp4',
|
132 |
+
'',
|
133 |
+
'',
|
134 |
+
0,
|
135 |
+
25,
|
136 |
+
4.5,
|
137 |
+
10,
|
138 |
+
],
|
139 |
+
[
|
140 |
+
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_serpent.mp4',
|
141 |
+
'',
|
142 |
+
'music',
|
143 |
+
0,
|
144 |
+
25,
|
145 |
+
4.5,
|
146 |
+
10,
|
147 |
+
],
|
148 |
+
[
|
149 |
+
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_seahorse.mp4',
|
150 |
+
'bubbles',
|
151 |
+
'',
|
152 |
+
0,
|
153 |
+
25,
|
154 |
+
4.5,
|
155 |
+
10,
|
156 |
+
],
|
157 |
+
[
|
158 |
+
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_india.mp4',
|
159 |
+
'Indian holy music',
|
160 |
+
'',
|
161 |
+
0,
|
162 |
+
25,
|
163 |
+
4.5,
|
164 |
+
10,
|
165 |
+
],
|
166 |
+
[
|
167 |
+
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_galloping.mp4',
|
168 |
+
'galloping',
|
169 |
+
'',
|
170 |
+
0,
|
171 |
+
25,
|
172 |
+
4.5,
|
173 |
+
10,
|
174 |
+
],
|
175 |
+
[
|
176 |
+
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_beach.mp4',
|
177 |
+
'waves, seagulls',
|
178 |
+
'',
|
179 |
+
0,
|
180 |
+
25,
|
181 |
+
4.5,
|
182 |
+
10,
|
183 |
+
],
|
184 |
+
[
|
185 |
+
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_kraken.mp4',
|
186 |
+
'waves, storm',
|
187 |
+
'',
|
188 |
+
0,
|
189 |
+
25,
|
190 |
+
4.5,
|
191 |
+
10,
|
192 |
+
],
|
193 |
+
[
|
194 |
+
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/mochi_storm.mp4',
|
195 |
+
'storm',
|
196 |
+
'',
|
197 |
+
0,
|
198 |
+
25,
|
199 |
+
4.5,
|
200 |
+
10,
|
201 |
+
],
|
202 |
+
[
|
203 |
+
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/hunyuan_spring.mp4',
|
204 |
+
'',
|
205 |
+
'',
|
206 |
+
0,
|
207 |
+
25,
|
208 |
+
4.5,
|
209 |
+
10,
|
210 |
+
],
|
211 |
+
[
|
212 |
+
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/hunyuan_typing.mp4',
|
213 |
+
'typing',
|
214 |
+
'',
|
215 |
+
0,
|
216 |
+
25,
|
217 |
+
4.5,
|
218 |
+
10,
|
219 |
+
],
|
220 |
+
[
|
221 |
+
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/hunyuan_wake_up.mp4',
|
222 |
+
'',
|
223 |
+
'',
|
224 |
+
0,
|
225 |
+
25,
|
226 |
+
4.5,
|
227 |
+
10,
|
228 |
+
],
|
229 |
+
])
|
230 |
+
|
231 |
+
text_to_audio_tab = gr.Interface(
|
232 |
+
fn=text_to_audio,
|
233 |
+
inputs=[
|
234 |
+
gr.Text(label='Prompt'),
|
235 |
+
gr.Text(label='Negative prompt'),
|
236 |
+
gr.Number(label='Seed', value=0, precision=0, minimum=0),
|
237 |
+
gr.Number(label='Num steps', value=25, precision=0, minimum=1),
|
238 |
+
gr.Number(label='Guidance Strength', value=4.5, minimum=1),
|
239 |
+
gr.Number(label='Duration (sec)', value=8, minimum=1),
|
240 |
+
],
|
241 |
+
outputs='audio',
|
242 |
+
cache_examples=False,
|
243 |
+
title='MMAudio — Text-to-Audio Synthesis',
|
244 |
+
)
|
245 |
+
|
246 |
+
gr.TabbedInterface([video_to_audio_tab, text_to_audio_tab],['Video-to-Audio', 'Text-to-Audio']).launch(inline=False, share=False, debug=True, server_name='0.0.0.0', server_port=7860, allowed_paths=[output_dir])
|