|
import os, json, requests, random, time, runpod |
|
from urllib.parse import urlsplit |
|
|
|
import numpy as np |
|
import torch |
|
import imageio |
|
from typing import * |
|
from PIL import Image |
|
from easydict import EasyDict as edict |
|
from trellis.pipelines import TrellisImageTo3DPipeline |
|
from trellis.representations import Gaussian, MeshExtractResult |
|
from trellis.utils import render_utils, postprocessing_utils |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
TMP_DIR = "/content" |
|
|
|
def preprocess_image(image_path: str) -> Tuple[str, Image.Image]: |
|
trial_id = "trellis-tost" |
|
image = Image.open(image_path).convert("RGBA") |
|
processed_image = pipeline.preprocess_image(image) |
|
processed_image.save(f"{TMP_DIR}/{trial_id}.png") |
|
return trial_id, processed_image |
|
|
|
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict: |
|
return { |
|
'gaussian': { |
|
**gs.init_params, |
|
'_xyz': gs._xyz.cpu().numpy(), |
|
'_features_dc': gs._features_dc.cpu().numpy(), |
|
'_scaling': gs._scaling.cpu().numpy(), |
|
'_rotation': gs._rotation.cpu().numpy(), |
|
'_opacity': gs._opacity.cpu().numpy(), |
|
}, |
|
'mesh': { |
|
'vertices': mesh.vertices.cpu().numpy(), |
|
'faces': mesh.faces.cpu().numpy(), |
|
}, |
|
'trial_id': trial_id, |
|
} |
|
|
|
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: |
|
gs = Gaussian( |
|
aabb=state['gaussian']['aabb'], |
|
sh_degree=state['gaussian']['sh_degree'], |
|
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], |
|
scaling_bias=state['gaussian']['scaling_bias'], |
|
opacity_bias=state['gaussian']['opacity_bias'], |
|
scaling_activation=state['gaussian']['scaling_activation'], |
|
) |
|
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') |
|
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') |
|
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') |
|
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') |
|
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') |
|
|
|
mesh = edict( |
|
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), |
|
faces=torch.tensor(state['mesh']['faces'], device='cuda'), |
|
) |
|
|
|
return gs, mesh, state['trial_id'] |
|
|
|
def image_to_3d(image_path: str, seed: int = 0, randomize_seed: bool = True, |
|
ss_guidance_strength: float = 7.5, ss_sampling_steps: int = 12, |
|
slat_guidance_strength: float = 3.0, slat_sampling_steps: int = 12) -> Tuple[dict, str]: |
|
trial_id, _ = preprocess_image(image_path) |
|
if randomize_seed: |
|
seed = np.random.randint(0, MAX_SEED) |
|
|
|
outputs = pipeline.run( |
|
Image.open(f"{TMP_DIR}/{trial_id}.png"), |
|
seed=seed, |
|
formats=["gaussian", "mesh"], |
|
preprocess_image=False, |
|
sparse_structure_sampler_params={ |
|
"steps": ss_sampling_steps, |
|
"cfg_strength": ss_guidance_strength, |
|
}, |
|
slat_sampler_params={ |
|
"steps": slat_sampling_steps, |
|
"cfg_strength": slat_guidance_strength, |
|
}, |
|
) |
|
|
|
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] |
|
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] |
|
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] |
|
trial_id = "trellis-tost" |
|
video_path = f"{TMP_DIR}/{trial_id}.mp4" |
|
imageio.mimsave(video_path, video, fps=15) |
|
|
|
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], str(trial_id)) |
|
return state, video_path |
|
|
|
def extract_glb(state: dict, mesh_simplify: float = 0.95, texture_size: int = 1024) -> str: |
|
gs, mesh, trial_id = unpack_state(state) |
|
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) |
|
glb_path = f"{TMP_DIR}/{trial_id}.glb" |
|
glb.export(glb_path) |
|
return glb_path |
|
|
|
def download_file(url, save_dir, file_name): |
|
os.makedirs(save_dir, exist_ok=True) |
|
file_suffix = os.path.splitext(urlsplit(url).path)[1] |
|
file_name_with_suffix = file_name + file_suffix |
|
file_path = os.path.join(save_dir, file_name_with_suffix) |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
with open(file_path, 'wb') as file: |
|
file.write(response.content) |
|
return file_path |
|
|
|
pipeline = TrellisImageTo3DPipeline.from_pretrained("/content/model") |
|
pipeline.cuda() |
|
|
|
def generate(input): |
|
values = input["input"] |
|
|
|
input_image = values['input_image'] |
|
input_image = download_file(url=input_image, save_dir='/content', file_name='input_image') |
|
seed = values['seed'] |
|
randomize_seed = values['randomize_seed'] |
|
ss_guidance_strength = values['ss_guidance_strength'] |
|
ss_sampling_steps = values['ss_sampling_steps'] |
|
slat_guidance_strength = values['slat_guidance_strength'] |
|
slat_sampling_steps = values['slat_sampling_steps'] |
|
mesh_simplify = values['mesh_simplify'] |
|
texture_size = values['texture_size'] |
|
|
|
state, video_path = image_to_3d(image_path=input_image, |
|
seed=seed, |
|
randomize_seed=randomize_seed, |
|
ss_guidance_strength=ss_guidance_strength, |
|
ss_sampling_steps=ss_sampling_steps, |
|
slat_guidance_strength=slat_guidance_strength, |
|
slat_sampling_steps=slat_sampling_steps) |
|
glb_path = extract_glb(state=state, mesh_simplify=mesh_simplify, texture_size=texture_size) |
|
|
|
result = ["/content/trellis-tost.mp4", ["/content/trellis-tost.glb", "/content/trellis-tost.png"]] |
|
try: |
|
notify_uri = values['notify_uri'] |
|
del values['notify_uri'] |
|
notify_token = values['notify_token'] |
|
del values['notify_token'] |
|
discord_id = values['discord_id'] |
|
del values['discord_id'] |
|
if(discord_id == "discord_id"): |
|
discord_id = os.getenv('com_camenduru_discord_id') |
|
discord_channel = values['discord_channel'] |
|
del values['discord_channel'] |
|
if(discord_channel == "discord_channel"): |
|
discord_channel = os.getenv('com_camenduru_discord_channel') |
|
discord_token = values['discord_token'] |
|
del values['discord_token'] |
|
if(discord_token == "discord_token"): |
|
discord_token = os.getenv('com_camenduru_discord_token') |
|
job_id = values['job_id'] |
|
del values['job_id'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with open(result[0], 'rb') as file0: |
|
response0 = requests.post("https://upload.tost.ai/api/v1", files={'file': file0}) |
|
response0.raise_for_status() |
|
with open(result[1][0], 'rb') as file1: |
|
response1 = requests.post("https://upload.tost.ai/api/v1", files={'file': file1}) |
|
response1.raise_for_status() |
|
with open(result[1][1], 'rb') as file2: |
|
response2 = requests.post("https://upload.tost.ai/api/v1", files={'file': file2}) |
|
response2.raise_for_status() |
|
result_urls = [response0.text, response1.text, response2.text] |
|
notify_payload = {"jobId": job_id, "result": str(result_urls), "status": "DONE"} |
|
web_notify_uri = os.getenv('com_camenduru_web_notify_uri') |
|
web_notify_token = os.getenv('com_camenduru_web_notify_token') |
|
if(notify_uri == "notify_uri"): |
|
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) |
|
else: |
|
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) |
|
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) |
|
return {"jobId": job_id, "result": str(result_urls), "status": "DONE"} |
|
except Exception as e: |
|
error_payload = {"jobId": job_id, "status": "FAILED"} |
|
try: |
|
if(notify_uri == "notify_uri"): |
|
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) |
|
else: |
|
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) |
|
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) |
|
except: |
|
pass |
|
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"} |
|
finally: |
|
if os.path.exists("/content/trellis-tost.mp4"): |
|
os.remove("/content/trellis-tost.mp4") |
|
if os.path.exists("/content/trellis-tost.glb"): |
|
os.remove("/content/trellis-tost.glb") |
|
if os.path.exists("/content/trellis-tost.png"): |
|
os.remove("/content/trellis-tost.png") |
|
|
|
runpod.serverless.start({"handler": generate}) |