File size: 8,669 Bytes
79859e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
from __future__ import annotations
import sys
import asyncio
from asyncio import AbstractEventLoop
from concurrent.futures import ThreadPoolExecutor
from abc import abstractmethod
from inspect import signature, Parameter
from ..typing import CreateResult, AsyncResult, Messages
from .types import BaseProvider
from .asyncio import get_running_loop, to_sync_generator
from .response import FinishReason, BaseConversation, SynthesizeData
from ..errors import ModelNotSupportedError
from .. import debug
# Set Windows event loop policy for better compatibility with asyncio and curl_cffi
if sys.platform == 'win32':
try:
from curl_cffi import aio
if not hasattr(aio, "_get_selector"):
if isinstance(asyncio.get_event_loop_policy(), asyncio.WindowsProactorEventLoopPolicy):
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
except ImportError:
pass
class AbstractProvider(BaseProvider):
"""
Abstract class for providing asynchronous functionality to derived classes.
"""
@classmethod
async def create_async(
cls,
model: str,
messages: Messages,
*,
loop: AbstractEventLoop = None,
executor: ThreadPoolExecutor = None,
**kwargs
) -> str:
"""
Asynchronously creates a result based on the given model and messages.
Args:
cls (type): The class on which this method is called.
model (str): The model to use for creation.
messages (Messages): The messages to process.
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
executor (ThreadPoolExecutor, optional): The executor for running async tasks. Defaults to None.
**kwargs: Additional keyword arguments.
Returns:
str: The created result as a string.
"""
loop = loop or asyncio.get_running_loop()
def create_func() -> str:
return "".join(cls.create_completion(model, messages, False, **kwargs))
return await asyncio.wait_for(
loop.run_in_executor(executor, create_func),
timeout=kwargs.get("timeout")
)
@classmethod
def get_parameters(cls) -> dict[str, Parameter]:
return {name: parameter for name, parameter in signature(
cls.create_async_generator if issubclass(cls, AsyncGeneratorProvider) else
cls.create_async if issubclass(cls, AsyncProvider) else
cls.create_completion
).parameters.items() if name not in ["kwargs", "model", "messages"]
and (name != "stream" or cls.supports_stream)}
@classmethod
@property
def params(cls) -> str:
"""
Returns the parameters supported by the provider.
Args:
cls (type): The class on which this property is called.
Returns:
str: A string listing the supported parameters.
"""
def get_type_name(annotation: type) -> str:
return annotation.__name__ if hasattr(annotation, "__name__") else str(annotation)
args = ""
for name, param in cls.get_parameters().items():
args += f"\n {name}"
args += f": {get_type_name(param.annotation)}" if param.annotation is not Parameter.empty else ""
default_value = f'"{param.default}"' if isinstance(param.default, str) else param.default
args += f" = {default_value}" if param.default is not Parameter.empty else ""
args += ","
return f"g4f.Provider.{cls.__name__} supports: ({args}\n)"
class AsyncProvider(AbstractProvider):
"""
Provides asynchronous functionality for creating completions.
"""
@classmethod
def create_completion(
cls,
model: str,
messages: Messages,
stream: bool = False,
**kwargs
) -> CreateResult:
"""
Creates a completion result synchronously.
Args:
cls (type): The class on which this method is called.
model (str): The model to use for creation.
messages (Messages): The messages to process.
stream (bool): Indicates whether to stream the results. Defaults to False.
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
**kwargs: Additional keyword arguments.
Returns:
CreateResult: The result of the completion creation.
"""
get_running_loop(check_nested=False)
yield asyncio.run(cls.create_async(model, messages, **kwargs))
@staticmethod
@abstractmethod
async def create_async(
model: str,
messages: Messages,
**kwargs
) -> str:
"""
Abstract method for creating asynchronous results.
Args:
model (str): The model to use for creation.
messages (Messages): The messages to process.
**kwargs: Additional keyword arguments.
Raises:
NotImplementedError: If this method is not overridden in derived classes.
Returns:
str: The created result as a string.
"""
raise NotImplementedError()
class AsyncGeneratorProvider(AsyncProvider):
"""
Provides asynchronous generator functionality for streaming results.
"""
supports_stream = True
@classmethod
def create_completion(
cls,
model: str,
messages: Messages,
stream: bool = True,
**kwargs
) -> CreateResult:
"""
Creates a streaming completion result synchronously.
Args:
cls (type): The class on which this method is called.
model (str): The model to use for creation.
messages (Messages): The messages to process.
stream (bool): Indicates whether to stream the results. Defaults to True.
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
**kwargs: Additional keyword arguments.
Returns:
CreateResult: The result of the streaming completion creation.
"""
return to_sync_generator(
cls.create_async_generator(model, messages, stream=stream, **kwargs)
)
@classmethod
async def create_async(
cls,
model: str,
messages: Messages,
**kwargs
) -> str:
"""
Asynchronously creates a result from a generator.
Args:
cls (type): The class on which this method is called.
model (str): The model to use for creation.
messages (Messages): The messages to process.
**kwargs: Additional keyword arguments.
Returns:
str: The created result as a string.
"""
return "".join([
str(chunk) async for chunk in cls.create_async_generator(model, messages, stream=False, **kwargs)
if not isinstance(chunk, (Exception, FinishReason, BaseConversation, SynthesizeData))
])
@staticmethod
@abstractmethod
async def create_async_generator(
model: str,
messages: Messages,
stream: bool = True,
**kwargs
) -> AsyncResult:
"""
Abstract method for creating an asynchronous generator.
Args:
model (str): The model to use for creation.
messages (Messages): The messages to process.
stream (bool): Indicates whether to stream the results. Defaults to True.
**kwargs: Additional keyword arguments.
Raises:
NotImplementedError: If this method is not overridden in derived classes.
Returns:
AsyncResult: An asynchronous generator yielding results.
"""
raise NotImplementedError()
class ProviderModelMixin:
default_model: str = None
models: list[str] = []
model_aliases: dict[str, str] = {}
image_models: list = None
@classmethod
def get_models(cls) -> list[str]:
if not cls.models and cls.default_model is not None:
return [cls.default_model]
return cls.models
@classmethod
def get_model(cls, model: str) -> str:
if not model and cls.default_model is not None:
model = cls.default_model
elif model in cls.model_aliases:
model = cls.model_aliases[model]
elif model not in cls.get_models() and cls.models:
raise ModelNotSupportedError(f"Model is not supported: {model} in: {cls.__name__}")
debug.last_model = model
return model |