Spaces:
Runtime error
Runtime error
File size: 5,999 Bytes
f61a028 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import base64
import concurrent.futures
import os
from io import BytesIO
import cv2
import gradio as gr
import numpy as np
import requests
import supervision as sv
from inference_sdk import InferenceHTTPClient
from openai import OpenAI
CLIENT = InferenceHTTPClient(
api_url="http://detect.roboflow.com",
api_key=os.environ["ROBOFLOW_API_KEY"],
)
openai_client = OpenAI()
def process_mask(region, task_id):
region = cv2.rotate(region, cv2.ROTATE_90_CLOCKWISE)
cv2.imwrite(f"region_{task_id}.jpg", region)
# change channels
region = cv2.cvtColor(region, cv2.COLOR_BGR2RGB)
base64_image = base64.b64encode(
BytesIO(cv2.imencode(".jpg", region)[1]).read()
).decode("utf-8")
response = openai_client.chat.completions.create(
model="gpt-4-vision-preview",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Read the text on the book spine. Only say the book cover title and author if you can find them. Say the book that is most prominent. Return the format [title] [author], with no punctuation.",
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
},
],
}
],
max_tokens=300,
)
print(response.choices[0].message.content.rstrip("Title:").replace("\n", " "))
return response.choices[0].message.content.rstrip("Title:").replace("\n", " ")
def process_book_with_google_books(book):
response = requests.get(
f"https://www.googleapis.com/books/v1/volumes?q={book}",
headers={"User-Agent": "Mozilla/5.0"},
)
response = response.json()
isbn, author, link = "NULL", "NULL", "NULL"
try:
isbn = response["items"][0]["volumeInfo"]["industryIdentifiers"][0][
"identifier"
]
if (
"volumeInfo" in response["items"][0]
and "authors" in response["items"][0]["volumeInfo"]
):
author = response["items"][0]["volumeInfo"]["authors"][0]
link = response["items"][0]["volumeInfo"]["infoLink"]
except:
pass
return isbn, author, link
# define function that accepts an image
def detect_books(image):
# infer on a local image
results = CLIENT.infer(image, model_id="open-shelves/4")
results = sv.Detections.from_inference(results)
mask_annotator = sv.MaskAnnotator()
annotated_image = mask_annotator.annotate(scene=image, detections=results)
masks_isolated = []
masks_to_xyxys = sv.mask_to_xyxy(masks=results.mask)
polygons = [sv.mask_to_polygons(mask) for mask in results.mask]
for mask in results.mask:
masked_region = np.zeros_like(image)
masked_region[mask] = image[mask]
masks_isolated.append(masked_region)
print("Calculated masks...")
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
tasks = [
executor.submit(process_mask, region, task_id)
for task_id, region in enumerate(masks_isolated)
]
books = [task.result() for task in tasks]
print("Processed books...")
links = []
isbns = []
authors = []
with concurrent.futures.ThreadPoolExecutor() as executor:
tasks = [
executor.submit(process_book_with_google_books, book) for book in books
]
for task in tasks:
isbn, author, link = task.result()
isbns.append(isbn)
authors.append(author)
links.append(link)
print("Processed books with Google Books...")
annotations = [
{
"title": title,
"author": author,
"isbn": isbn,
"polygons": [polygon.tolist() for polygon in polygon_list],
"xyxy": xyxy.tolist(),
"link": link,
}
for title, author, isbn, polygon_list, xyxy, link in zip(
books, authors, isbns, polygons, results.xyxy, links
)
if "sorry" not in title.lower() and "NULL" not in title
]
width, height = image.shape[1], image.shape[0]
svg = f"""<div class="image-container"><img src="image.jpeg" height="{height}" width="{width}">
<svg width="{width}" height="{height}">"""
for annotation in annotations:
polygons = annotation["polygons"][0]
svg += f"""<polygon points="{', '.join([f'{x},{y}' for x, y in polygons])}" fill="transparent" stroke="red" stroke-width="2"
onclick="window.location.href='{annotation['link']}';"></polygon>"""
svg += "</svg>"
svg += """
<style>
.image-container {
position: relative;
height: HEIGHTpx;
width: WIDTHpx;
}
.image-container img, .image-container svg {
position: absolute;
left: 0;
top: 0;
width: 100%;
height: auto;
}
.image-container svg {
z-index: 1;
}
</style></div>""".replace(
"HEIGHT", str(height)
).replace(
"WIDTH", str(width)
)
return annotated_image, books, isbns, svg
iface = gr.Interface(
fn=detect_books,
description="Use Open Shelves to detect books in an image. The model will return the annotated image with the detected books, the titles of the books, and the ISBNs of the books.",
inputs=gr.components.Image(label="Input Image"),
# outputs should be an image and a list of text
outputs=[
gr.components.Image(label="Annotated Image"),
gr.components.Textbox(label="Detected Books"),
gr.components.Textbox(label="ISBNs"),
gr.components.Textbox(label="SVG"),
],
title="Open Shelves",
allow_flagging=False,
theme="huggingface",
)
iface.launch()
|