File size: 5,999 Bytes
f61a028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import base64
import concurrent.futures
import os
from io import BytesIO

import cv2
import gradio as gr
import numpy as np
import requests
import supervision as sv
from inference_sdk import InferenceHTTPClient
from openai import OpenAI

CLIENT = InferenceHTTPClient(
    api_url="http://detect.roboflow.com",
    api_key=os.environ["ROBOFLOW_API_KEY"],
)

openai_client = OpenAI()


def process_mask(region, task_id):
    region = cv2.rotate(region, cv2.ROTATE_90_CLOCKWISE)

    cv2.imwrite(f"region_{task_id}.jpg", region)

    # change channels
    region = cv2.cvtColor(region, cv2.COLOR_BGR2RGB)

    base64_image = base64.b64encode(
        BytesIO(cv2.imencode(".jpg", region)[1]).read()
    ).decode("utf-8")

    response = openai_client.chat.completions.create(
        model="gpt-4-vision-preview",
        messages=[
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "Read the text on the book spine. Only say the book cover title and author if you can find them. Say the book that is most prominent. Return the format [title] [author], with no punctuation.",
                    },
                    {
                        "type": "image_url",
                        "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
                    },
                ],
            }
        ],
        max_tokens=300,
    )

    print(response.choices[0].message.content.rstrip("Title:").replace("\n", " "))

    return response.choices[0].message.content.rstrip("Title:").replace("\n", " ")


def process_book_with_google_books(book):
    response = requests.get(
        f"https://www.googleapis.com/books/v1/volumes?q={book}",
        headers={"User-Agent": "Mozilla/5.0"},
    )
    response = response.json()

    isbn, author, link = "NULL", "NULL", "NULL"

    try:
        isbn = response["items"][0]["volumeInfo"]["industryIdentifiers"][0][
            "identifier"
        ]
        if (
            "volumeInfo" in response["items"][0]
            and "authors" in response["items"][0]["volumeInfo"]
        ):
            author = response["items"][0]["volumeInfo"]["authors"][0]
        link = response["items"][0]["volumeInfo"]["infoLink"]
    except:
        pass

    return isbn, author, link


# define function that accepts an image
def detect_books(image):
    # infer on a local image
    results = CLIENT.infer(image, model_id="open-shelves/4")
    results = sv.Detections.from_inference(results)

    mask_annotator = sv.MaskAnnotator()
    annotated_image = mask_annotator.annotate(scene=image, detections=results)

    masks_isolated = []

    masks_to_xyxys = sv.mask_to_xyxy(masks=results.mask)

    polygons = [sv.mask_to_polygons(mask) for mask in results.mask]

    for mask in results.mask:
        masked_region = np.zeros_like(image)
        masked_region[mask] = image[mask]
        masks_isolated.append(masked_region)

    print("Calculated masks...")

    with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
        tasks = [
            executor.submit(process_mask, region, task_id)
            for task_id, region in enumerate(masks_isolated)
        ]
        books = [task.result() for task in tasks]

    print("Processed books...")

    links = []

    isbns = []
    authors = []

    with concurrent.futures.ThreadPoolExecutor() as executor:
        tasks = [
            executor.submit(process_book_with_google_books, book) for book in books
        ]

        for task in tasks:
            isbn, author, link = task.result()
            isbns.append(isbn)
            authors.append(author)
            links.append(link)

    print("Processed books with Google Books...")

    annotations = [
        {
            "title": title,
            "author": author,
            "isbn": isbn,
            "polygons": [polygon.tolist() for polygon in polygon_list],
            "xyxy": xyxy.tolist(),
            "link": link,
        }
        for title, author, isbn, polygon_list, xyxy, link in zip(
            books, authors, isbns, polygons, results.xyxy, links
        )
        if "sorry" not in title.lower() and "NULL" not in title
    ]

    width, height = image.shape[1], image.shape[0]

    svg = f"""<div class="image-container"><img src="image.jpeg" height="{height}" width="{width}">
        
        <svg width="{width}" height="{height}">"""

    for annotation in annotations:
        polygons = annotation["polygons"][0]
        svg += f"""<polygon points="{', '.join([f'{x},{y}' for x, y in polygons])}" fill="transparent" stroke="red" stroke-width="2"
        onclick="window.location.href='{annotation['link']}';"></polygon>"""

    svg += "</svg>"
    svg += """
        <style>
        .image-container {
            position: relative;
            height: HEIGHTpx;
            width: WIDTHpx;
        }
        .image-container img, .image-container svg {
            position: absolute;
            left: 0;
            top: 0;
            width: 100%;
            height: auto;
        }
        .image-container svg {
            z-index: 1;
        }
        </style></div>""".replace(
        "HEIGHT", str(height)
    ).replace(
        "WIDTH", str(width)
    )

    return annotated_image, books, isbns, svg


iface = gr.Interface(
    fn=detect_books,
    description="Use Open Shelves to detect books in an image. The model will return the annotated image with the detected books, the titles of the books, and the ISBNs of the books.",
    inputs=gr.components.Image(label="Input Image"),
    # outputs should be an image and a list of text
    outputs=[
        gr.components.Image(label="Annotated Image"),
        gr.components.Textbox(label="Detected Books"),
        gr.components.Textbox(label="ISBNs"),
        gr.components.Textbox(label="SVG"),
    ],
    title="Open Shelves",
    allow_flagging=False,
    theme="huggingface",
)
iface.launch()