captain-awesome
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
1 |
+
Hugging Face's logo
|
2 |
+
Hugging Face
|
3 |
+
Search models, datasets, users...
|
4 |
+
Models
|
5 |
+
Datasets
|
6 |
+
Spaces
|
7 |
+
Posts
|
8 |
+
Docs
|
9 |
+
Solutions
|
10 |
+
Pricing
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
Spaces:
|
15 |
+
|
16 |
+
Satyacoder
|
17 |
+
/
|
18 |
+
vision_test
|
19 |
+
|
20 |
+
|
21 |
+
like
|
22 |
+
0
|
23 |
+
App
|
24 |
+
Files
|
25 |
+
Community
|
26 |
+
vision_test
|
27 |
+
/
|
28 |
+
app.py
|
29 |
+
|
30 |
+
Satyacoder's picture
|
31 |
+
Satyacoder
|
32 |
+
Update app.py
|
33 |
+
8602d39
|
34 |
+
5 months ago
|
35 |
+
raw
|
36 |
+
history
|
37 |
+
blame
|
38 |
+
contribute
|
39 |
+
delete
|
40 |
+
No virus
|
41 |
+
1.72 kB
|
42 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
43 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
44 |
+
import torch
|
45 |
+
from PIL import Image
|
46 |
+
import requests
|
47 |
import gradio as gr
|
48 |
|
49 |
+
box_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
50 |
+
box_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
51 |
+
|
52 |
+
caption_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
53 |
+
caption_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
54 |
+
|
55 |
+
def predict_bounding_boxes(imageurl:str):
|
56 |
+
try:
|
57 |
+
response = requests.get(imageurl, stream=True)
|
58 |
+
response.raise_for_status()
|
59 |
+
|
60 |
+
image_data = Image.open(response.raw)
|
61 |
+
inputs = box_processor(images=image_data, return_tensors="pt")
|
62 |
+
outputs = box_model(**inputs)
|
63 |
+
|
64 |
+
target_sizes = torch.tensor([image_data.size[::-1]])
|
65 |
+
results = box_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.70)[0]
|
66 |
+
|
67 |
+
detections = [{"score": score.item(), "label": box_model.config.id2label[label.item()], "box": box.tolist()} for score, label, box in zip(results["scores"], results["labels"], results["boxes"])]
|
68 |
+
|
69 |
+
raw_image = image_data.convert('RGB')
|
70 |
+
inputs = caption_processor(raw_image, return_tensors="pt")
|
71 |
+
out = caption_model.generate(**inputs)
|
72 |
+
label = caption_processor.decode(out[0], skip_special_tokens=True)
|
73 |
+
return {"image label": label, "detections": detections}
|
74 |
+
|
75 |
+
except Exception as e:
|
76 |
+
|
77 |
+
return {"error": str(e)}
|
78 |
+
|
79 |
+
app = gr.Interface(fn=predict_bounding_boxes, inputs="text", outputs="json")
|
80 |
+
app.api = True
|
81 |
+
app.launch()
|