Spaces:
Sleeping
Sleeping
from haystack.nodes import PromptNode, PromptTemplate | |
from haystack.nodes import AnswerParser | |
from haystack.nodes import TransformersSummarizer | |
def prompting_model(): | |
''' | |
Define a prompt node in haystack pipeline | |
''' | |
# prompt_node = PromptNode(model_name_or_path="facebook/galactica-125m", default_prompt_template="deepset/question-answering-per-document") | |
prompt_node = PromptNode(model_name_or_path="facebook/galactica-125m") | |
return prompt_node | |
def prompting_model_2(): | |
''' | |
Define a prompt node in haystack pipeline, with detailed prompt | |
''' | |
custom_prompt = PromptTemplate(prompt = """ You are a helpful and knowledgeable agent. To achieve your goal of answering complex questions, | |
you have access to the following paragraph : | |
{join(documents)} | |
Your output should be a detailed summary of the paragraph | |
""") | |
summarization_template = PromptTemplate("deepset/summarization") | |
prompt_node = PromptNode(model_name_or_path="facebook/galactica-125m", default_prompt_template=custom_prompt) | |
return prompt_node | |
def summarize(): | |
''' | |
Use a summarizer node, to summarize the output of generator | |
To remove redundancy/repitition | |
''' | |
summarizer = TransformersSummarizer(model_name_or_path="google/pegasus-xsum") | |
return summarizer | |