ChatLiterature / hay /retriever.py
carbonnnnn's picture
Upload 12 files
4823e70
raw
history blame
1.78 kB
from haystack.utils import convert_files_to_docs
from haystack.nodes import PreProcessor
import pyarrow as pa
import pyarrow.dataset as ds
import pandas as pd
from datasets import Dataset, load_from_disk
import pandas as pd
from haystack.nodes import BM25Retriever
from haystack.document_stores import InMemoryDocumentStore
from haystack.document_stores import FAISSDocumentStore
from haystack.nodes import DensePassageRetriever
from haystack.document_stores import InMemoryDocumentStore
from haystack.nodes import TfidfRetriever
import warnings
warnings.filterwarnings('ignore')
def generate_docs(overlap, length, d='data'):
'''
Takes in split length and split overlap
Saves the docs in a pandas dataframe
'''
all_docs = convert_files_to_docs(dir_path=d)
preprocessor = PreProcessor(
clean_empty_lines=True,
clean_whitespace=True,
clean_header_footer=True,
split_by="word",
split_overlap=overlap,
split_length=length,
split_respect_sentence_boundary=False,
)
docs = preprocessor.process(all_docs)
# print(f"n_files_input: {len(all_docs)}\nn_docs_output: {len(docs)}")
df = pd.DataFrame(docs)
dataset = Dataset(pa.Table.from_pandas(df))
# dataset.save_to_disk('outputs/docs-dataset')
dataset.save_to_disk('outputs/docs-'+d)
return None
def retriever1(d):
'''
Use BM25 Retriever to retrieve data
'''
# dataset = load_from_disk('outputs/docs-dataset')
dataset = load_from_disk('outputs/docs-'+d)
# BM25Retriever with InMemoryDocumentStore
document_store = InMemoryDocumentStore(use_bm25=True)
document_store.write_documents(dataset)
retriever = BM25Retriever(document_store=document_store, top_k=10)
return retriever