File size: 11,523 Bytes
df27934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
912322b
df27934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
912322b
df27934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
912322b
df27934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
912322b
df27934
912322b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import torch
import streamlit as st
from streamlit import components
import pandas as pd
from transformers import BartTokenizer, BartForConditionalGeneration
from transformers import T5Tokenizer, T5ForConditionalGeneration
import evaluate
from datasets import load_dataset
from transformers import AutoTokenizer, LongT5ForConditionalGeneration
import numpy as np
from math import ceil
import en_core_web_lg
from collections import Counter
from string import punctuation
# Gensim
import gensim
from gensim.summarization import summarize
import spacy

nlp = en_core_web_lg.load()

st.set_page_config(page_title ='Clinical Note Summarization', 
                   #page_icon= "Notes",
                   layout='wide')
st.title('Clinical Note Summarization')
st.sidebar.markdown('Using transformer model')

## Loading in dataset
#df = pd.read_csv('mtsamples_small.csv',index_col=0)
df = pd.read_csv("demo_shpi_w_rouge25Nov.csv")
#df.shape
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))

##Renaming column
#df.rename(columns={'patient id':'Patient_ID',
#                  'hospital admission id':'Admission_ID',
#                  'transcription':'Original_Text'}, inplace = True)

#Renaming column
df.rename(columns={'SUBJECT_ID':'Patient_ID',
                  'HADM_ID':'Admission_ID',
                  'hpi_input_text':'Original_Text',
                  'hpi_reference_summary':'Reference_text'}, inplace = True)
 
 #data.rename(columns={'gdp':'log(gdp)'}, inplace=True)

#Filter selection 
st.sidebar.header("Search for Patient:")

patientid = df['Patient_ID']
patient = st.sidebar.selectbox('Select Patient ID:', patientid)
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
HospitalAdmission = st.sidebar.selectbox(' ', admissionid) 

#Another way to for filter selection 
#patient = st.sidebar.multiselect(
#        "Select Patient ID:",
#        options=df['Patient_ID'].unique(),
#        default= None 
#)


#HospitalAdmission = st.sidebar.multiselect(
#        "Select Hospital Admission ID:",
#        options=df['Admission_ID'].unique(),
#        #default=df['Admission_ID'].unique()
#        default = None
#)


# List of Model available
model = st.sidebar.selectbox('Select Model', ('BART','BERT','BertGPT2','Gensim','LexRank','Long T5','Luhn','Pysummarization','SBERT Summary Tokenizer','T5','T5 Seq2Seq','T5-Base','TextRank'))


if model == 'BART':
    _num_beams = 4
    _no_repeat_ngram_size = 3
    _length_penalty = 1
    _min_length = 12
    _max_length = 128
    _early_stopping = True
else:
    _num_beams = 4
    _no_repeat_ngram_size = 3
    _length_penalty = 2
    _min_length = 30
    _max_length = 200
    _early_stopping = True
    



col3,col4 = st.columns(2) 
patientid = col3.write(f"Patient ID:  {patient} ")
admissionid =col4.write(f"Admission ID:  {HospitalAdmission} ")
    
col1, col2 = st.columns(2)
_min_length = col1.number_input("Minimum Length", value=_min_length)
_max_length = col2.number_input("Maximun Length", value=_max_length)
##_early_stopping = col3.number_input("early_stopping", value=_early_stopping)

#text = st.text_area('Input Clinical Note here')

# Query out relevant Clinical notes
original_text =  df.query(
    "Patient_ID  == @patient & Admission_ID == @HospitalAdmission"
)

original_text2 = original_text['Original_Text'].values

runtext =st.text_area('Input Clinical Note here:', str(original_text2), height=300)

reference_text = original_text['Reference_text'].values



#===== Pysummarization =====
from pysummarization.nlpbase.auto_abstractor import AutoAbstractor
from pysummarization.tokenizabledoc.simple_tokenizer import SimpleTokenizer
from pysummarization.abstractabledoc.top_n_rank_abstractor import TopNRankAbstractor
import regex as re

auto_abstractor = AutoAbstractor()
auto_abstractor.tokenizable_doc = SimpleTokenizer()
auto_abstractor.delimiter_list = [".", "\n"]
abstractable_doc = TopNRankAbstractor()

def pysummarizer(input_text):
#    print(type(text))
    summary = auto_abstractor.summarize(input_text, abstractable_doc)
    best_sentences=[]
    #summary_clean = ''.join([str(sentence).capitalize() for sentence in summary['summarize_result'] for summary['summarize_result'] in auto_abstractor.summarize(text, abstractable_doc)])
    for sentence in summary['summarize_result']:
        best_sentences.append(re.sub(r'\s+', ' ', sentence).strip())    
    clean_summary=''.join(sentence for sentence in best_sentences)
    return clean_summary



##===== BERT Summary tokenizer =====

def BertSummarizer(input_text):
    from transformers import BigBirdTokenizer
    from summarizer import Summarizer

    bertsummarizer = Summarizer()

    model = Summarizer()
    result = model(input_text,ratio=0.4)
    
    return result


##===== SBERT =====
from summarizer.sbert import SBertSummarizer


Sbertmodel = SBertSummarizer('paraphrase-MiniLM-L6-v2')

def Sbert(input_text):
    
#     Sbertresult = Sbertmodel(text, num_sentences=3)
    Sbertresult = Sbertmodel(input_text, ratio=0.4)
    return Sbertresult



##===== T5 Seq2Seq =====
def t5seq2seq(input_text):
    import torch
    import torch.nn.functional as F
    from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
    
    model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
    tokenizer = AutoTokenizer.from_pretrained("t5-base")

    inputs = tokenizer("summarize: " + input_text, return_tensors="pt", max_length=512, truncation=True)
    outputs = model.generate(inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)

    summary= tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    return summary

def BertGPT2(input_text):
    #import nlp

    # BioClinicalBert with BERT2GPT2 model with GPT2 decoder
    from transformers import BertTokenizer, GPT2Tokenizer, EncoderDecoderModel
    from transformers import AutoTokenizer, AutoModel

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2gpt2-cnn_dailymail-fp16")
    model.to(device)

    #bert_tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
    bert_tokenizer= AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")

    # CLS token will work as BOS token
    bert_tokenizer.bos_token = bert_tokenizer.cls_token

    # SEP token will work as EOS token
    bert_tokenizer.eos_token = bert_tokenizer.sep_token


    # make sure GPT2 appends EOS in begin and end
    def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
        outputs = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
        return outputs


    GPT2Tokenizer.build_inputs_with_special_tokens = build_inputs_with_special_tokens
    gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
    # set pad_token_id to unk_token_id -> be careful here as unk_token_id == eos_token_id == bos_token_id
    gpt2_tokenizer.pad_token = gpt2_tokenizer.unk_token


    # set decoding params
    model.config.decoder_start_token_id = gpt2_tokenizer.bos_token_id
    model.config.eos_token_id = gpt2_tokenizer.eos_token_id
    model.config.max_length = 142
    model.config.min_length = 56
    model.config.no_repeat_ngram_size = 3
    model.early_stopping = True
    model.length_penalty = 2.0
    model.num_beams = 4

    #test_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="test")

    batch_size = 64
 
    def Sbertmodel(batch):
        # Tokenizer will automatically set [BOS] <text> [EOS]
        # cut off at BERT max length 512
        inputs = bert_tokenizer(batch, padding="max_length", truncation=True, max_length=512, return_tensors="pt")
        input_ids = inputs.input_ids.to("cuda")
        attention_mask = inputs.attention_mask.to("cuda")

        outputs = model.generate(input_ids, attention_mask=attention_mask)

        # all special tokens including will be removed
        output_str = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        #batch["pred"] = output_str

        return output_str
    
    Sbert(input_text)

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")


def run_model(input_text):

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    if model == "BART":
        bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
        bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
        input_text = str(input_text)
        input_text = ' '.join(input_text.split())
        input_tokenized = bart_tokenizer.encode(input_text, return_tensors='pt').to(device)
        summary_ids = bart_model.generate(input_tokenized,
                                          num_beams=_num_beams,
                                          no_repeat_ngram_size=_no_repeat_ngram_size,
                                          length_penalty=_length_penalty,
                                          min_length=_min_length,
                                          max_length=_max_length,
                                          early_stopping=_early_stopping)

        output = [bart_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
        st.write('Summary')
        st.success(output[0])
      
    elif model == "T5":
        t5_model = T5ForConditionalGeneration.from_pretrained("t5-base")
        t5_tokenizer = T5Tokenizer.from_pretrained("t5-base")
        input_text = str(input_text).replace('\n', '')
        input_text = ' '.join(input_text.split())
        input_tokenized = t5_tokenizer.encode(input_text, return_tensors="pt").to(device)
        summary_task = torch.tensor([[21603, 10]]).to(device)
        input_tokenized = torch.cat([summary_task, input_tokenized], dim=-1).to(device)
        summary_ids = t5_model.generate(input_tokenized,
                                        num_beams=_num_beams,
                                        no_repeat_ngram_size=_no_repeat_ngram_size,
                                        length_penalty=_length_penalty,
                                        min_length=_min_length,
                                        max_length=_max_length,
                                        early_stopping=_early_stopping)
        output = [t5_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
        st.write('Summary')
        st.success(output[0])
        
      
    elif model == "Gensim": 
        output=summarize(str(input_text))
        st.write('Summary')
        st.success(output)
        
    elif model == "Pysummarization":
        output = pysummarizer(input_text)
        st.write('Summary')
        st.success(output)
        
    elif model == "BERT": 
        output = BertSummarizer(input_text)
        st.write('Summary')
        st.success(output)
        
    elif model == "SBERT Summary Tokenizer": 
        output = Sbert(input_text)
        st.write('Summary')
        st.success(output)
        
    elif model == "T5 Seq2Seq":
        output = t5seq2seq(input_text)
        st.write('Summary')
        st.success(output)
        
    elif model == "BertGPT2": #Not working correctly. to work on it later on 
        output = BertGPT2(input_text)
        st.write('Summary')
        st.success(output)


if st.button('Submit'):
    run_model(runtext)
    
   
    st.text_area('Reference text', str(reference_text))