Spaces:
Build error
Build error
File size: 11,523 Bytes
df27934 912322b df27934 912322b df27934 912322b df27934 912322b df27934 912322b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import torch
import streamlit as st
from streamlit import components
import pandas as pd
from transformers import BartTokenizer, BartForConditionalGeneration
from transformers import T5Tokenizer, T5ForConditionalGeneration
import evaluate
from datasets import load_dataset
from transformers import AutoTokenizer, LongT5ForConditionalGeneration
import numpy as np
from math import ceil
import en_core_web_lg
from collections import Counter
from string import punctuation
# Gensim
import gensim
from gensim.summarization import summarize
import spacy
nlp = en_core_web_lg.load()
st.set_page_config(page_title ='Clinical Note Summarization',
#page_icon= "Notes",
layout='wide')
st.title('Clinical Note Summarization')
st.sidebar.markdown('Using transformer model')
## Loading in dataset
#df = pd.read_csv('mtsamples_small.csv',index_col=0)
df = pd.read_csv("demo_shpi_w_rouge25Nov.csv")
#df.shape
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
##Renaming column
#df.rename(columns={'patient id':'Patient_ID',
# 'hospital admission id':'Admission_ID',
# 'transcription':'Original_Text'}, inplace = True)
#Renaming column
df.rename(columns={'SUBJECT_ID':'Patient_ID',
'HADM_ID':'Admission_ID',
'hpi_input_text':'Original_Text',
'hpi_reference_summary':'Reference_text'}, inplace = True)
#data.rename(columns={'gdp':'log(gdp)'}, inplace=True)
#Filter selection
st.sidebar.header("Search for Patient:")
patientid = df['Patient_ID']
patient = st.sidebar.selectbox('Select Patient ID:', patientid)
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
HospitalAdmission = st.sidebar.selectbox(' ', admissionid)
#Another way to for filter selection
#patient = st.sidebar.multiselect(
# "Select Patient ID:",
# options=df['Patient_ID'].unique(),
# default= None
#)
#HospitalAdmission = st.sidebar.multiselect(
# "Select Hospital Admission ID:",
# options=df['Admission_ID'].unique(),
# #default=df['Admission_ID'].unique()
# default = None
#)
# List of Model available
model = st.sidebar.selectbox('Select Model', ('BART','BERT','BertGPT2','Gensim','LexRank','Long T5','Luhn','Pysummarization','SBERT Summary Tokenizer','T5','T5 Seq2Seq','T5-Base','TextRank'))
if model == 'BART':
_num_beams = 4
_no_repeat_ngram_size = 3
_length_penalty = 1
_min_length = 12
_max_length = 128
_early_stopping = True
else:
_num_beams = 4
_no_repeat_ngram_size = 3
_length_penalty = 2
_min_length = 30
_max_length = 200
_early_stopping = True
col3,col4 = st.columns(2)
patientid = col3.write(f"Patient ID: {patient} ")
admissionid =col4.write(f"Admission ID: {HospitalAdmission} ")
col1, col2 = st.columns(2)
_min_length = col1.number_input("Minimum Length", value=_min_length)
_max_length = col2.number_input("Maximun Length", value=_max_length)
##_early_stopping = col3.number_input("early_stopping", value=_early_stopping)
#text = st.text_area('Input Clinical Note here')
# Query out relevant Clinical notes
original_text = df.query(
"Patient_ID == @patient & Admission_ID == @HospitalAdmission"
)
original_text2 = original_text['Original_Text'].values
runtext =st.text_area('Input Clinical Note here:', str(original_text2), height=300)
reference_text = original_text['Reference_text'].values
#===== Pysummarization =====
from pysummarization.nlpbase.auto_abstractor import AutoAbstractor
from pysummarization.tokenizabledoc.simple_tokenizer import SimpleTokenizer
from pysummarization.abstractabledoc.top_n_rank_abstractor import TopNRankAbstractor
import regex as re
auto_abstractor = AutoAbstractor()
auto_abstractor.tokenizable_doc = SimpleTokenizer()
auto_abstractor.delimiter_list = [".", "\n"]
abstractable_doc = TopNRankAbstractor()
def pysummarizer(input_text):
# print(type(text))
summary = auto_abstractor.summarize(input_text, abstractable_doc)
best_sentences=[]
#summary_clean = ''.join([str(sentence).capitalize() for sentence in summary['summarize_result'] for summary['summarize_result'] in auto_abstractor.summarize(text, abstractable_doc)])
for sentence in summary['summarize_result']:
best_sentences.append(re.sub(r'\s+', ' ', sentence).strip())
clean_summary=''.join(sentence for sentence in best_sentences)
return clean_summary
##===== BERT Summary tokenizer =====
def BertSummarizer(input_text):
from transformers import BigBirdTokenizer
from summarizer import Summarizer
bertsummarizer = Summarizer()
model = Summarizer()
result = model(input_text,ratio=0.4)
return result
##===== SBERT =====
from summarizer.sbert import SBertSummarizer
Sbertmodel = SBertSummarizer('paraphrase-MiniLM-L6-v2')
def Sbert(input_text):
# Sbertresult = Sbertmodel(text, num_sentences=3)
Sbertresult = Sbertmodel(input_text, ratio=0.4)
return Sbertresult
##===== T5 Seq2Seq =====
def t5seq2seq(input_text):
import torch
import torch.nn.functional as F
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
tokenizer = AutoTokenizer.from_pretrained("t5-base")
inputs = tokenizer("summarize: " + input_text, return_tensors="pt", max_length=512, truncation=True)
outputs = model.generate(inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)
summary= tokenizer.decode(outputs[0], skip_special_tokens=True)
return summary
def BertGPT2(input_text):
#import nlp
# BioClinicalBert with BERT2GPT2 model with GPT2 decoder
from transformers import BertTokenizer, GPT2Tokenizer, EncoderDecoderModel
from transformers import AutoTokenizer, AutoModel
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2gpt2-cnn_dailymail-fp16")
model.to(device)
#bert_tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
bert_tokenizer= AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
# CLS token will work as BOS token
bert_tokenizer.bos_token = bert_tokenizer.cls_token
# SEP token will work as EOS token
bert_tokenizer.eos_token = bert_tokenizer.sep_token
# make sure GPT2 appends EOS in begin and end
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
outputs = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
return outputs
GPT2Tokenizer.build_inputs_with_special_tokens = build_inputs_with_special_tokens
gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# set pad_token_id to unk_token_id -> be careful here as unk_token_id == eos_token_id == bos_token_id
gpt2_tokenizer.pad_token = gpt2_tokenizer.unk_token
# set decoding params
model.config.decoder_start_token_id = gpt2_tokenizer.bos_token_id
model.config.eos_token_id = gpt2_tokenizer.eos_token_id
model.config.max_length = 142
model.config.min_length = 56
model.config.no_repeat_ngram_size = 3
model.early_stopping = True
model.length_penalty = 2.0
model.num_beams = 4
#test_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="test")
batch_size = 64
def Sbertmodel(batch):
# Tokenizer will automatically set [BOS] <text> [EOS]
# cut off at BERT max length 512
inputs = bert_tokenizer(batch, padding="max_length", truncation=True, max_length=512, return_tensors="pt")
input_ids = inputs.input_ids.to("cuda")
attention_mask = inputs.attention_mask.to("cuda")
outputs = model.generate(input_ids, attention_mask=attention_mask)
# all special tokens including will be removed
output_str = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True)
#batch["pred"] = output_str
return output_str
Sbert(input_text)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def run_model(input_text):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if model == "BART":
bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
input_text = str(input_text)
input_text = ' '.join(input_text.split())
input_tokenized = bart_tokenizer.encode(input_text, return_tensors='pt').to(device)
summary_ids = bart_model.generate(input_tokenized,
num_beams=_num_beams,
no_repeat_ngram_size=_no_repeat_ngram_size,
length_penalty=_length_penalty,
min_length=_min_length,
max_length=_max_length,
early_stopping=_early_stopping)
output = [bart_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
st.write('Summary')
st.success(output[0])
elif model == "T5":
t5_model = T5ForConditionalGeneration.from_pretrained("t5-base")
t5_tokenizer = T5Tokenizer.from_pretrained("t5-base")
input_text = str(input_text).replace('\n', '')
input_text = ' '.join(input_text.split())
input_tokenized = t5_tokenizer.encode(input_text, return_tensors="pt").to(device)
summary_task = torch.tensor([[21603, 10]]).to(device)
input_tokenized = torch.cat([summary_task, input_tokenized], dim=-1).to(device)
summary_ids = t5_model.generate(input_tokenized,
num_beams=_num_beams,
no_repeat_ngram_size=_no_repeat_ngram_size,
length_penalty=_length_penalty,
min_length=_min_length,
max_length=_max_length,
early_stopping=_early_stopping)
output = [t5_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
st.write('Summary')
st.success(output[0])
elif model == "Gensim":
output=summarize(str(input_text))
st.write('Summary')
st.success(output)
elif model == "Pysummarization":
output = pysummarizer(input_text)
st.write('Summary')
st.success(output)
elif model == "BERT":
output = BertSummarizer(input_text)
st.write('Summary')
st.success(output)
elif model == "SBERT Summary Tokenizer":
output = Sbert(input_text)
st.write('Summary')
st.success(output)
elif model == "T5 Seq2Seq":
output = t5seq2seq(input_text)
st.write('Summary')
st.success(output)
elif model == "BertGPT2": #Not working correctly. to work on it later on
output = BertGPT2(input_text)
st.write('Summary')
st.success(output)
if st.button('Submit'):
run_model(runtext)
st.text_area('Reference text', str(reference_text))
|