### 1. Imports and class names setup ### import gradio as gr import os import torch from model import create_vit16_model from timeit import default_timer as timer from typing import Tuple, Dict # Setup class names with open("class_names.txt", "r") as f: # reading them in from class_names.txt class_names = [food_name.strip() for food_name in f.readlines()] ### 2. Model and transforms preparation ### # Create model vit16, vit16_transforms = create_vit16_model( num_classes=101, # could also use len(class_names) ) vit16.load_state_dict( torch.load( f="model_food101_20_percent.pth", map_location=torch.device("cpu"), # load to CPU ) ) ### 3. Predict function ### # Create predict function def predict(img) -> Tuple[Dict, float]: """Transforms and performs a prediction on img and returns prediction and time taken. """ # Start the timer start_time = timer() # Transform the target image and add a batch dimension img = vit16_transforms(img).unsqueeze(0) # Put model into evaluation mode and turn on inference mode vit16.eval() with torch.inference_mode(): # Pass the transformed image through the model and turn the prediction logits into prediction probabilities pred_probs = torch.softmax(vit16(img), dim=1) # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Calculate the prediction time pred_time = round(timer() - start_time, 5) # Return the prediction dictionary and prediction time return pred_labels_and_probs, pred_time ### 4. Gradio app ### # Create title, description and article strings title = "FoodVision ViT 🍔👁" description = "A ViT_B_16 feature extractor computer vision model to classify images of food into 101 different classes using 20% of the data." article = "" # Create examples list from "examples/" directory example_list = [["examples/" + example] for example in os.listdir("examples")] # Create Gradio interface demo = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=[ gr.Label(num_top_classes=5, label="Predictions"), gr.Number(label="Prediction time (s)"), ], examples=example_list, title=title, description=description, article=article, ) # Launch the app! demo.launch()