Spaces:
Paused
Paused
File size: 8,573 Bytes
130c728 aa38253 130c728 aa38253 aa81522 3db8a39 bd4216b 5f32076 3db8a39 5f32076 3db8a39 130c728 34ad460 52e3d62 130c728 73600fd 77ef75a 130c728 77ef75a fb20557 130c728 2085d31 130c728 2085d31 130c728 cd95bca a327111 130c728 aa38253 2085d31 130c728 a327111 aa38253 52e369f aa38253 52e369f 73600fd 52e369f fcce9ea 73600fd 69ffa48 73600fd 8184f41 73600fd 69ffa48 8184f41 aa38253 8184f41 130c728 e96cc49 cd95bca 130c728 cd95bca 95aae57 5f32076 cd95bca 5f32076 cd95bca e96cc49 95aae57 130c728 cd95bca 130c728 cd95bca 73600fd 130c728 aa38253 130c728 cd95bca 130c728 cd95bca 130c728 cd95bca 130c728 cd95bca 3a275e3 95aae57 130c728 cd95bca 130c728 cd95bca a327111 9977588 a327111 130c728 a327111 130c728 8184f41 130c728 77052a4 cb88a6d 130c728 8184f41 7c70000 4a468e1 bd4216b 12c4f19 bd4216b 12c4f19 381f8ef 7c70000 8184f41 5f32076 130c728 5f32076 130c728 5f32076 77ef75a 69ffa48 5f32076 69ffa48 8184f41 130c728 8184f41 130c728 cb88a6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import transformers
import re
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM
import torch
import gradio as gr
import json
import os
import shutil
import requests
import lancedb
import pandas as pd
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "PleIAs/Pleias-Rag"
# Get Hugging Face token from environment variable
hf_token = os.environ.get('HF_TOKEN')
if not hf_token:
raise ValueError("Please set the HF_TOKEN environment variable")
# Initialize model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token)
model.to(device)
# Set tokenizer configuration
tokenizer.eos_token = "<|answer_end|>"
eos_token_id=tokenizer.eos_token_id
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = 1
# Define variables
temperature = 0.0
max_new_tokens = 1200
top_p = 0.95
repetition_penalty = 1.0
min_new_tokens = 600
early_stopping = False
# Connect to the LanceDB database
db = lancedb.connect("content19/lancedb_data")
table = db.open_table("edunat19")
def hybrid_search(text):
results = table.search(text, query_type="hybrid").limit(5).to_pandas()
# Add a check for duplicate hashes
seen_hashes = set()
document = []
document_html = []
for _, row in results.iterrows():
hash_id = str(row['hash'])
# Skip if we've already seen this hash
if hash_id in seen_hashes:
continue
seen_hashes.add(hash_id)
title = row['section']
content = row['text']
document.append(f"<|source_start|><|source_id_start|>{hash_id}<|source_id_end|>{title}\n{content}<|source_end|>")
document_html.append(f'<div class="source" id="{hash_id}"><p><b>{hash_id}</b> : {title}<br>{content}</div>')
document = "\n".join(document)
document_html = '<div id="source_listing">' + "".join(document_html) + "</div>"
return document, document_html
class pleiasBot:
def __init__(self, system_prompt="Tu es Appli, un asistant de recherche qui donne des responses sourcées"):
self.system_prompt = system_prompt
def predict(self, user_message):
fiches, fiches_html = hybrid_search(user_message)
detailed_prompt = f"""<|query_start|>{user_message}<|query_end|>\n{fiches}\n<|source_analysis_start|>"""
# Convert inputs to tensor
input_ids = tokenizer.encode(detailed_prompt, return_tensors="pt").to(device)
attention_mask = torch.ones_like(input_ids)
try:
output = model.generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=False,
early_stopping=early_stopping,
min_new_tokens=min_new_tokens,
temperature=temperature,
repetition_penalty=repetition_penalty,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
# Decode the generated text
generated_text = tokenizer.decode(output[0][len(input_ids[0]):])
# Split the text into analysis and answer sections
parts = generated_text.split("<|source_analysis_end|>")
if len(parts) == 2:
analysis = parts[0].strip()
answer = parts[1].replace("<|answer_start|>", "").replace("<|answer_end|>", "").strip()
# Format each section with matching h2 titles
analysis_text = '<h2 style="text-align:center">Analyse des sources</h2>\n<div class="generation">' + format_references(analysis) + "</div>"
answer_text = '<h2 style="text-align:center">Réponse</h2>\n<div class="generation">' + format_references(answer) + "</div>"
else:
analysis_text = ""
answer_text = format_references(generated_text)
fiches_html = '<h2 style="text-align:center">Sources</h2>\n' + fiches_html
return analysis_text, answer_text, fiches_html
except Exception as e:
print(f"Error during generation: {str(e)}")
import traceback
traceback.print_exc()
return None, None, None
def format_references(text):
ref_pattern = r'<ref name="([^"]+)">"([^"]+)"</ref>\.\s*' # Modified pattern to include the period and whitespace after ref
parts = []
current_pos = 0
ref_number = 1
for match in re.finditer(ref_pattern, text):
# Add text before the reference
text_before = text[current_pos:match.start()].rstrip()
parts.append(text_before)
# Extract reference components
ref_id = match.group(1)
ref_text = match.group(2).strip()
# Add the reference, keeping the existing structure but adding <br> where whitespace was
tooltip_html = f'<span class="tooltip"><strong>[{ref_number}]</strong><span class="tooltiptext"><strong>{ref_id}</strong>: {ref_text}</span></span>.<br>'
parts.append(tooltip_html)
current_pos = match.end()
ref_number += 1
# Add any remaining text
parts.append(text[current_pos:])
return ''.join(parts)
# Initialize the pleiasBot
pleias_bot = pleiasBot()
# CSS for styling
css = """
.generation {
margin-left: 2em;
margin-right: 2em;
}
:target {
background-color: #CCF3DF;
}
.source {
float: left;
max-width: 17%;
margin-left: 2%;
}
.tooltip {
position: relative;
display: inline-block;
color: #183EFA;
font-weight: bold;
cursor: pointer;
}
.tooltip .tooltiptext {
visibility: hidden;
background-color: #fff;
color: #000;
text-align: left;
padding: 12px;
border-radius: 6px;
border: 1px solid #e5e7eb;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
position: absolute;
z-index: 1;
bottom: 125%;
left: 50%;
transform: translateX(-50%);
min-width: 300px;
max-width: 400px;
white-space: normal;
font-size: 0.9em;
line-height: 1.4;
}
.tooltip:hover .tooltiptext {
visibility: visible;
}
.tooltip .tooltiptext::after {
content: "";
position: absolute;
top: 100%;
left: 50%;
margin-left: -5px;
border-width: 5px;
border-style: solid;
border-color: #fff transparent transparent transparent;
}
.section-title {
font-weight: bold;
font-size: 15px;
margin-bottom: 1em;
margin-top: 1em;
}
"""
# Gradio interface
def gradio_interface(user_message):
analysis, response, sources = pleias_bot.predict(user_message)
return analysis, response, sources
# Create Gradio app
demo = gr.Blocks(css=css)
with demo:
# Header with black bar
gr.HTML("""
<div style="display: flex; justify-content: center; width: 100%; background-color: black; padding: 5px 0;">
<pre style="font-family: monospace; line-height: 1.2; font-size: 12px; color: #00ffea; margin: 0;">
_ _ ______ ___ _____
| | (_) | ___ \\/ _ \\| __ \\
_ __ | | ___ _ __ _ ___ ______ | |_/ / /_\\ \\ | \\/
| '_ \\| |/ _ \\ |/ _` / __| |______| | /| _ | | __
| |_) | | __/ | (_| \\__ \\ | |\\ \\| | | | |_\\ \\
| .__/|_|\\___|_|\\__,_|___/ \\_| \\_\\_| |_/\\____/
| |
|_| </pre>
</div>
""")
# Centered input section
with gr.Column(scale=1):
text_input = gr.Textbox(label="Votre question ou votre instruction", lines=3)
text_button = gr.Button("Interroger pleias-RAG")
# Analysis and Response in side-by-side columns
with gr.Row():
# Left column for analysis
with gr.Column(scale=2):
text_output = gr.HTML(label="Analyse des sources")
# Right column for response
with gr.Column(scale=3):
response_output = gr.HTML(label="Réponse")
# Sources at the bottom
with gr.Row():
embedding_output = gr.HTML(label="Les sources utilisées")
text_button.click(gradio_interface,
inputs=text_input,
outputs=[text_output, response_output, embedding_output])
# Launch the app
if __name__ == "__main__":
demo.launch() |