gutgut / app.py
Carlos Rosas
Update app.py
69ffa48 verified
raw
history blame
7.82 kB
import transformers
import re
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM
import torch
import gradio as gr
import json
import os
import shutil
import requests
import lancedb
import pandas as pd
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "PleIAs/Pleias-Rag"
# Get Hugging Face token from environment variable
hf_token = os.environ.get('HF_TOKEN')
if not hf_token:
raise ValueError("Please set the HF_TOKEN environment variable")
# Initialize model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token)
model.to(device)
# Set tokenizer configuration
tokenizer.eos_token = "<|answer_end|>"
eos_token_id=tokenizer.eos_token_id
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = 1
# Define variables
temperature = 0.0
max_new_tokens = 1400
top_p = 0.95
repetition_penalty = 1.0
min_new_tokens = 700
early_stopping = False
# Connect to the LanceDB database
db = lancedb.connect("content19/lancedb_data")
table = db.open_table("edunat19")
def hybrid_search(text):
results = table.search(text, query_type="hybrid").limit(5).to_pandas()
document = []
document_html = []
for _, row in results.iterrows():
hash_id = str(row['hash'])
title = row['section']
content = row['text']
document.append(f"<|source_start|><|source_id_start|>{hash_id}<|source_id_end|>{title}\n{content}<|source_end|>")
document_html.append(f'<div class="source" id="{hash_id}"><p><b>{hash_id}</b> : {title}<br>{content}</div>')
document = "\n".join(document)
document_html = '<div id="source_listing">' + "".join(document_html) + "</div>"
return document, document_html
class pleiasBot:
def __init__(self, system_prompt="Tu es Appli, un asistant de recherche qui donne des responses sourcées"):
self.system_prompt = system_prompt
def predict(self, user_message):
fiches, fiches_html = hybrid_search(user_message)
detailed_prompt = f"""<|query_start|>{user_message}<|query_end|>\n{fiches}\n<|source_analysis_start|>"""
# Convert inputs to tensor
input_ids = tokenizer.encode(detailed_prompt, return_tensors="pt").to(device)
attention_mask = torch.ones_like(input_ids)
try:
output = model.generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=False,
early_stopping=early_stopping,
min_new_tokens=min_new_tokens,
temperature=temperature,
repetition_penalty=repetition_penalty,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
# Decode the generated text
generated_text = tokenizer.decode(output[0][len(input_ids[0]):])
# Split the text into analysis and answer sections
parts = generated_text.split("<|source_analysis_end|>")
if len(parts) == 2:
analysis = parts[0].strip()
answer = parts[1].replace("<|answer_start|>", "").replace("<|answer_end|>", "").strip()
# Format each section with matching h2 titles
analysis_text = '<h2 style="text-align:center">Analyse des sources</h2>\n<div class="generation">' + format_references(analysis) + "</div>"
answer_text = '<h2 style="text-align:center">Réponse</h2>\n<div class="generation">' + format_references(answer) + "</div>"
else:
analysis_text = ""
answer_text = format_references(generated_text)
fiches_html = '<h2 style="text-align:center">Sources</h2>\n' + fiches_html
return analysis_text, answer_text, fiches_html
except Exception as e:
print(f"Error during generation: {str(e)}")
import traceback
traceback.print_exc()
return None, None, None
def format_references(text):
ref_pattern = r'<ref name="([^"]+)">"([^"]+)"</ref>'
parts = []
current_pos = 0
ref_number = 1
import re
for match in re.finditer(ref_pattern, text):
# Add text before the reference
parts.append(text[current_pos:match.start()])
# Extract reference components
ref_id = match.group(1) # The source ID
ref_text = match.group(2).strip() # The reference text
# Create tooltip HTML with source ID in bold
tooltip_html = f'<span class="tooltip">[{ref_number}]<span class="tooltiptext"><strong>{ref_id}</strong>: {ref_text}</span></span>'
parts.append(tooltip_html)
current_pos = match.end()
ref_number += 1
# Add any remaining text
parts.append(text[current_pos:])
return ''.join(parts)
# Initialize the pleiasBot
pleias_bot = pleiasBot()
# CSS for styling
css = """
.generation {
margin-left: 2em;
margin-right: 2em;
}
:target {
background-color: #CCF3DF;
}
.source {
float: left;
max-width: 17%;
margin-left: 2%;
}
.tooltip {
position: relative;
display: inline-block;
color: #2563eb;
cursor: pointer;
}
.tooltip .tooltiptext {
visibility: hidden;
background-color: #fff;
color: #000;
text-align: left;
padding: 12px;
border-radius: 6px;
border: 1px solid #e5e7eb;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
position: absolute;
z-index: 1;
bottom: 125%;
left: 50%;
transform: translateX(-50%);
min-width: 300px;
max-width: 400px;
white-space: normal;
font-size: 0.9em;
line-height: 1.4;
}
.tooltip:hover .tooltiptext {
visibility: visible;
}
.tooltip .tooltiptext::after {
content: "";
position: absolute;
top: 100%;
left: 50%;
margin-left: -5px;
border-width: 5px;
border-style: solid;
border-color: #fff transparent transparent transparent;
}
.section-title {
font-weight: bold;
font-size: 15px;
margin-bottom: 1em;
margin-top: 1em;
}
"""
# Gradio interface
def gradio_interface(user_message):
analysis, response, sources = pleias_bot.predict(user_message)
return analysis, response, sources
# Create Gradio app
demo = gr.Blocks(css=css)
with demo:
# Header with black bar
gr.HTML("""
<div style="display: flex; justify-content: center; width: 100%; background-color: black; padding: 10px 0;">
<pre style="font-family: monospace; line-height: 1.2; font-size: 24px; color: #00ffea; margin: 0;">
╔═══════════════════╗
║ pleias-RAG 1.0 ║
╚═══════════════════╝
</pre>
</div>
""")
with gr.Row():
# Left column for input, button and answer
with gr.Column(scale=2):
text_input = gr.Textbox(label="Votre question ou votre instruction", lines=3)
text_button = gr.Button("Interroger pleias-RAG")
response_output = gr.HTML(label="Réponse")
# Right column for analysis
with gr.Column(scale=3):
text_output = gr.HTML(label="Analyse des sources")
# Sources at the bottom
with gr.Row():
embedding_output = gr.HTML(label="Les sources utilisées")
text_button.click(gradio_interface,
inputs=text_input,
outputs=[text_output, response_output, embedding_output])
# Launch the app
if __name__ == "__main__":
demo.launch()