Carlos Rosas commited on
Commit
89c250e
·
verified ·
1 Parent(s): 52e369f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -54,8 +54,8 @@ def hybrid_search(text):
54
  title = row['section']
55
  content = row['text']
56
 
57
- document.append(f"**{hash_id}**\n{title}\n{content}")
58
- document_html.append(f'<div class="source" id="{hash_id}"><p><b>{hash_id}</b> : {title}<br>{content}</div>')
59
 
60
  document = "\n\n".join(document)
61
  document_html = '<div id="source_listing">' + "".join(document_html) + "</div>"
@@ -68,7 +68,7 @@ class CassandreChatBot:
68
  def predict(self, user_message):
69
  fiches, fiches_html = hybrid_search(user_message)
70
 
71
- detailed_prompt = f"""### Query ###\n{user_message}\n\n### Source ###\n{fiches}\n\n### Analysis ###\n"""
72
 
73
  # Convert inputs to tensor
74
  input_ids = tokenizer.encode(detailed_prompt, return_tensors="pt").to(device)
@@ -190,13 +190,13 @@ def gradio_interface(user_message):
190
  demo = gr.Blocks(css=css)
191
 
192
  with demo:
193
- gr.HTML("""<h1 style="text-align:center">Cassandre</h1>""")
194
  with gr.Row():
195
  with gr.Column(scale=2):
196
  text_input = gr.Textbox(label="Votre question ou votre instruction", lines=3)
197
- text_button = gr.Button("Interroger Cassandre")
198
  with gr.Column(scale=3):
199
- text_output = gr.HTML(label="La réponse de Cassandre")
200
  with gr.Row():
201
  embedding_output = gr.HTML(label="Les sources utilisées")
202
 
 
54
  title = row['section']
55
  content = row['text']
56
 
57
+ document.append(f"<|source_id_start|>{hash_id}<|source_id_end|>\n{content}")
58
+ document_html.append(f'<div class="source" id="{hash_id}"><p><b>{hash_id}</b> : <br>{content}</div>')
59
 
60
  document = "\n\n".join(document)
61
  document_html = '<div id="source_listing">' + "".join(document_html) + "</div>"
 
68
  def predict(self, user_message):
69
  fiches, fiches_html = hybrid_search(user_message)
70
 
71
+ detailed_prompt = f"""<|query_start|>{user_message}<|query_end|>\n### Source ###\n{fiches}\n\n<|source_analysis_start|>\n"""
72
 
73
  # Convert inputs to tensor
74
  input_ids = tokenizer.encode(detailed_prompt, return_tensors="pt").to(device)
 
190
  demo = gr.Blocks(css=css)
191
 
192
  with demo:
193
+ gr.HTML("""<h1 style="text-align:center">pleias-RAG 1.0</h1>""")
194
  with gr.Row():
195
  with gr.Column(scale=2):
196
  text_input = gr.Textbox(label="Votre question ou votre instruction", lines=3)
197
+ text_button = gr.Button("Interroger pleias-RAG")
198
  with gr.Column(scale=3):
199
+ text_output = gr.HTML(label="La réponse de pleias-RAG")
200
  with gr.Row():
201
  embedding_output = gr.HTML(label="Les sources utilisées")
202