File size: 29,406 Bytes
62977bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
conditions:
  - name: bm25-rocchio-d2q-t5-tuned
    display: BM25+Rocchio w/ doc2query-T5 (k1=2.18, b=0.86)
    display-html: BM25+Rocchio w/ doc2query-T5 (<i>k<sub><small>1</small></sub></i>=2.18, <i>b</i>=0.86)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-d2q-t5-docvectors --topics $topics --output $output --bm25 --rocchio
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.2395
            R@1K: 0.9535
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4339
            nDCG@10: 0.6559
            R@1K: 0.8465
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4376
            nDCG@10: 0.6224
            R@1K: 0.8641
  - name: bm25-rocchio-d2q-t5-default
    display: BM25+Rocchio w/ doc2query-T5 (k1=0.9, b=0.4)
    display-html: BM25+Rocchio w/ doc2query-T5 (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-d2q-t5-docvectors --topics $topics --output $output --bm25 --rocchio --k1 0.9 --b 0.4
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.2158
            R@1K: 0.9467
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4469
            nDCG@10: 0.6538
            R@1K: 0.8855
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4246
            nDCG@10: 0.6102
            R@1K: 0.8675
  - name: bm25-rocchio-default
    display: BM25+Rocchio (k1=0.9, b=0.4)
    display-html: BM25+Rocchio (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage --topics $topics --output $output --bm25 --k1 0.9 --b 0.4 --rocchio
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.1595
            R@1K: 0.8620
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.3474
            nDCG@10: 0.5275
            R@1K: 0.8007
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.3115
            nDCG@10: 0.4910
            R@1K: 0.8156
  - name: bm25-rocchio-tuned
    display: BM25+Rocchio (k1=0.82, b=0.68)
    display-html: BM25+Rocchio (<i>k<sub><small>1</small></sub></i>=0.82, <i>b</i>=0.68)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage --topics $topics --output $output --bm25 --rocchio
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.1684
            R@1K: 0.8726
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.3396
            nDCG@10: 0.5275
            R@1K: 0.7948
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.3120
            nDCG@10: 0.4908
            R@1K: 0.8327
  - name: distilbert-kd-tasb-pytorch
    display: "DistilBERT KD TASB: query inference with PyTorch"
    display-html: "DistilBERT KD TASB: query inference with PyTorch"
    display-row: "[5]"
    command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.distilbert-dot-tas_b-b256 --topics $topics --encoder sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco --output $output
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3444
            R@1K: 0.9771
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4590
            nDCG@10: 0.7210
            R@1K: 0.8406
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4698
            nDCG@10: 0.6854
            R@1K: 0.8727
  - name: distilbert-kd-tasb
    display: "DistilBERT KD TASB: pre-encoded"
    display-html: "DistilBERT KD TASB: pre-encoded queries"
    display-row: "[5]"
    command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.distilbert-dot-tas_b-b256 --topics $topics --encoded-queries distilbert_tas_b-$topics --output $output
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3444
            R@1K: 0.9771
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4590
            nDCG@10: 0.7210
            R@1K: 0.8406
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4698
            nDCG@10: 0.6854
            R@1K: 0.8727
  - name: distilbert-kd-pytorch
    display: "DistilBERT KD: query inference with PyTorch"
    display-html: "DistilBERT KD: query inference with PyTorch"
    display-row: "[4]"
    command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.distilbert-dot-margin-mse-t2 --topics $topics --encoder sebastian-hofstaetter/distilbert-dot-margin_mse-T2-msmarco --output $output
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3251
            R@1K: 0.9553
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4053
            nDCG@10: 0.6994
            R@1K: 0.7653
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4159
            nDCG@10: 0.6447
            R@1K: 0.7953
  - name: distilbert-kd
    display: "DistilBERT KD: pre-encoded"
    display-html: "DistilBERT KD: pre-encoded queries"
    display-row: "[4]"
    command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.distilbert-dot-margin-mse-t2 --topics $topics --encoded-queries distilbert_kd-$topics --output $output
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3251
            R@1K: 0.9553
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4053
            nDCG@10: 0.6994
            R@1K: 0.7653
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4159
            nDCG@10: 0.6447
            R@1K: 0.7953
  - name: ance-pytorch
    display: "ANCE: query inference with PyTorch"
    display-html: "ANCE: query inference with PyTorch"
    display-row: "[3]"
    command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.ance --topics $topics --encoder castorini/ance-msmarco-passage --output $output
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3302
            R@1K: 0.9587
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.3710
            nDCG@10: 0.6452
            R@1K: 0.7554
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4076
            nDCG@10: 0.6458
            R@1K: 0.7764
  - name: ance
    display: "ANCE: pre-encoded"
    display-html: "ANCE: pre-encoded queries"
    display-row: "[3]"
    command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.ance --topics $topics --encoded-queries ance-$topics --output $output
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3302
            R@1K: 0.9584
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.3710
            nDCG@10: 0.6452
            R@1K: 0.7554
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4076
            nDCG@10: 0.6458
            R@1K: 0.7764
  - name: bm25-tuned
    display: BM25 (k1=0.82, b=0.68)
    display-html: BM25 (<i>k<sub><small>1</small></sub></i>=0.82, <i>b</i>=0.68)
    command: python -m pyserini.search.lucene --topics $topics --index msmarco-v1-passage --output $output --bm25
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.1875
            R@1K: 0.8573
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.2903
            nDCG@10: 0.4973
            R@1K: 0.7450
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.2876
            nDCG@10: 0.4876
            R@1K: 0.8031
  - name: bm25-rm3-tuned
    display: BM25+RM3 (k1=0.82, b=0.68)
    display-html: BM25+RM3 (<i>k<sub><small>1</small></sub></i>=0.82, <i>b</i>=0.68)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage --topics $topics --output $output --bm25 --rm3
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.1646
            R@1K: 0.8704
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.3339
            nDCG@10: 0.5147
            R@1K: 0.7950
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.3017
            nDCG@10: 0.4924
            R@1K: 0.8292
  - name: bm25-default
    display: BM25 (k1=0.9, b=0.4)
    display-html: BM25 (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4)
    display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] &mdash; (1a)"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage --topics $topics --output $output --bm25 --k1 0.9 --b 0.4
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.1840
            R@1K: 0.8526
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.3013
            nDCG@10: 0.5058
            R@1K: 0.7501
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.2856
            nDCG@10: 0.4796
            R@1K: 0.7863
  - name: bm25-rm3-default
    display: BM25+RM3 (k1=0.9, b=0.4)
    display-html: BM25+RM3 (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4)
    display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] &mdash; (1b)"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage --topics $topics --output $output --bm25 --k1 0.9 --b 0.4 --rm3
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.1566
            R@1K: 0.8606
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.3416
            nDCG@10: 0.5216
            R@1K: 0.8136
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.3006
            nDCG@10: 0.4896
            R@1K: 0.8236
  - name: bm25-d2q-t5-tuned
    display: BM25 w/ doc2query-T5 (k1=2.18, b=0.86)
    display-html: BM25 w/ doc2query-T5 (<i>k<sub><small>1</small></sub></i>=2.18, <i>b</i>=0.86)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-d2q-t5 --topics $topics --output $output --bm25
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.2816
            R@1K: 0.9506
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4046
            nDCG@10: 0.6336
            R@1K: 0.8134
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4171
            nDCG@10: 0.6265
            R@1K: 0.8393
  - name: bm25-d2q-t5-default
    display: BM25 w/ doc2query-T5 (k1=0.9, b=0.4)
    display-html: BM25 w/ doc2query-T5 (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4)
    display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] &mdash; (2a)"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-d2q-t5 --topics $topics --output $output --bm25 --k1 0.9 --b 0.4
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.2723
            R@1K: 0.9470
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4034
            nDCG@10: 0.6417
            R@1K: 0.8310
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4074
            nDCG@10: 0.6187
            R@1K: 0.8452
  - name: bm25-rm3-d2q-t5-tuned
    display: BM25+RM3 w/ doc2query-T5 (k1=2.18, b=0.86)
    display-html: BM25+RM3 w/ doc2query-T5 (<i>k<sub><small>1</small></sub></i>=2.18, <i>b</i>=0.86)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-d2q-t5-docvectors --topics $topics --output $output --bm25 --rm3
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.2382
            R@1K: 0.9528
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4377
            nDCG@10: 0.6537
            R@1K: 0.8443
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4348
            nDCG@10: 0.6235
            R@1K: 0.8605
  - name: bm25-rm3-d2q-t5-default
    display: BM25+RM3 w/ doc2query-T5 (k1=0.9, b=0.4)
    display-html: BM25+RM3 w/ doc2query-T5 (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4)
    display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] &mdash; (2b)"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-d2q-t5-docvectors --topics $topics --output $output --bm25 --rm3 --k1 0.9 --b 0.4
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.2139
            R@1K: 0.9460
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4483
            nDCG@10: 0.6586
            R@1K: 0.8863
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4286
            nDCG@10: 0.6131
            R@1K: 0.8700
  - name: unicoil-pytorch
    display: "uniCOIL (w/ doc2query-T5): query inference with PyTorch"
    display-html: "uniCOIL (w/ doc2query-T5): query inference with PyTorch"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-unicoil --topics $topics --encoder castorini/unicoil-msmarco-passage --output $output --hits 1000 --impact
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3509
            R@1K: 0.9581
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4617
            nDCG@10: 0.7027
            R@1K: 0.8291
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4429
            nDCG@10: 0.6745
            R@1K: 0.8433
  - name: unicoil-onnx
    display: "uniCOIL (w/ doc2query-T5): query inference with ONNX"
    display-html: "uniCOIL (w/ doc2query-T5): query inference with ONNX"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-unicoil --topics $topics --onnx-encoder UniCoil --output $output --hits 1000 --impact
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3509
            R@1K: 0.9581
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4617
            nDCG@10: 0.7027
            R@1K: 0.8291
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4429
            nDCG@10: 0.6745
            R@1K: 0.8433
  - name: unicoil
    display: "uniCOIL (w/ doc2query-T5): pre-encoded"
    display-html: "uniCOIL (w/ doc2query-T5): pre-encoded queries"
    display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] &mdash; (3b)"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-unicoil --topics $topics --output $output --hits 1000 --impact
    topics:
      - topic_key: msmarco-passage-dev-subset-unicoil
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3516
            R@1K: 0.9582
      - topic_key: dl19-passage-unicoil
        eval_key: dl19-passage
        scores:
          - MAP: 0.4612
            nDCG@10: 0.7024
            R@1K: 0.8292
      - topic_key: dl20-unicoil
        eval_key: dl20-passage
        scores:
          - MAP: 0.4430
            nDCG@10: 0.6745
            R@1K: 0.8430
  - name: unicoil-noexp-pytorch
    display: "uniCOIL (noexp): query inference with PyTorch"
    display-html: "uniCOIL (noexp): query inference with PyTorch"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-unicoil-noexp --topics $topics --encoder castorini/unicoil-noexp-msmarco-passage --output $output --hits 1000 --impact
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3153
            R@1K: 0.9239
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4033
            nDCG@10: 0.6434
            R@1K: 0.7752
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4022
            nDCG@10: 0.6524
            R@1K: 0.7861
  - name: unicoil-noexp-onnx
    display: "uniCOIL (noexp): query inference with ONNX"
    display-html: "uniCOIL (noexp): query inference with ONNX"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-unicoil-noexp --topics $topics --onnx-encoder UniCoil --output $output --hits 1000 --impact
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3119
            R@1K: 0.9239
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4061
            nDCG@10: 0.6531
            R@1K: 0.7809
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.3909
            nDCG@10: 0.6388
            R@1K: 0.7915
  - name: unicoil-noexp
    display: "uniCOIL (noexp): pre-encoded"
    display-html: "uniCOIL (noexp): pre-encoded queries"
    display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] &mdash; (3a)"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-unicoil-noexp --topics $topics --output $output --hits 1000 --impact
    topics:
      - topic_key: msmarco-passage-dev-subset-unicoil-noexp
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3153
            R@1K: 0.9239
      - topic_key: dl19-passage-unicoil-noexp
        eval_key: dl19-passage
        scores:
          - MAP: 0.4033
            nDCG@10: 0.6433
            R@1K: 0.7752
      - topic_key: dl20-unicoil-noexp
        eval_key: dl20-passage
        scores:
          - MAP: 0.4021
            nDCG@10: 0.6523
            R@1K: 0.7861
  - name: splade-pp-ed-onnx
    display: "SPLADE++ EnsembleDistil: query inference with ONNX"
    display-html: "SPLADE++ EnsembleDistil: query inference with ONNX"
    display-row: "[2]"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-splade-pp-ed --topics $topics --onnx-encoder SpladePlusPlusEnsembleDistil --output $output --hits 1000 --impact
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3830
            R@1K: 0.9831
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.5054
            nDCG@10: 0.7320
            R@1K: 0.8724
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.5002
            nDCG@10: 0.7198
            R@1K: 0.8995
  - name: splade-pp-sd-onnx
    display: "SPLADE++ SelfDistil: query inference with ONNX"
    display-html: "SPLADE++ SelfDistil: query inference with ONNX"
    display-row: "[2]"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-splade-pp-sd --topics $topics --onnx-encoder SpladePlusPlusSelfDistil --output $output --hits 1000 --impact
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3778
            R@1K: 0.9846
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4997
            nDCG@10: 0.7356
            R@1K: 0.8758
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.5140
            nDCG@10: 0.7285
            R@1K: 0.9023   
  - name: tct_colbert-v2-hnp-pytorch
    display: "TCT_ColBERT-V2-HN+: query inference with PyTorch"
    display-html: "TCT_ColBERT-V2-HN+: query inference with PyTorch"
    display-row: "[6]"
    command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.tct_colbert-v2-hnp --topics $topics --encoder castorini/tct_colbert-v2-hnp-msmarco --output $output
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3584
            R@1K: 0.9695
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4469
            nDCG@10: 0.7204
            R@1K: 0.8261
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4754
            nDCG@10: 0.6882
            R@1K: 0.8429
  - name: tct_colbert-v2-hnp
    display: "TCT_ColBERT-V2-HN+: pre-encoded"
    display-html: "TCT_ColBERT-V2-HN+: pre-encoded queries"
    display-row: "[6]"
    command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.tct_colbert-v2-hnp --topics $topics --encoded-queries tct_colbert-v2-hnp-$topics --output $output
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3584
            R@1K: 0.9695
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4469
            nDCG@10: 0.7204
            R@1K: 0.8261
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4754
            nDCG@10: 0.6882
            R@1K: 0.8429
  - name: slimr
    display: "SLIM: query inference with PyTorch"
    display-html: "SLIM: query inference with PyTorch"
    display-row: "[7]"
    command: python -m pyserini.search.lucene --threads 16 --batch 128 --index msmarco-v1-passage-slimr --topics $topics --encoder castorini/slimr-msmarco-passage --encoded-corpus scipy-sparse-vectors.msmarco-v1-passage-slimr --output $output --output-format msmarco --hits 1000 --impact --min-idf 3
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3581
            R@1K: 0.9620
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4509
            nDCG@10: 0.7010
            R@1K: 0.8241
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4419
            nDCG@10: 0.6403
            R@1K: 0.8543
  - name: slimr-pp
    display: "SLIM++: query inference with PyTorch"
    display-html: "SLIM++: query inference with PyTorch"
    display-row: "[7]"
    command: python -m pyserini.search.lucene --threads 16 --batch 128 --index msmarco-v1-passage-slimr-pp --topics $topics --encoder castorini/slimr-pp-msmarco-passage --encoded-corpus scipy-sparse-vectors.msmarco-v1-passage-slimr-pp --output $output --output-format msmarco --hits 1000 --impact --min-idf 3
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.4032
            R@1K: 0.9680
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4687
            nDCG@10: 0.7140
            R@1K: 0.8415
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4906
            nDCG@10: 0.7021
            R@1K: 0.8551
  - name: aggretriever-distilbert-pytorch
    display: "Aggretriever-DistilBERT: query inference with PyTorch"
    display-html: "Aggretriever-DistilBERT: query inference with PyTorch"
    display-row: "[8]"
    command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.aggretriever-distilbert --topics $topics --encoder castorini/aggretriever-distilbert --output $output
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3412
            R@1K: 0.9604
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4301
            nDCG@10: 0.6816
            R@1K: 0.8023
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4329
            nDCG@10: 0.6726
            R@1K: 0.8351
  - name: aggretriever-cocondenser-pytorch
    display: "Aggretriever-coCondenser: query inference with PyTorch"
    display-html: "Aggretriever-coCondenser: query inference with PyTorch"
    display-row: "[8]"
    command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.aggretriever-cocondenser --topics $topics --encoder castorini/aggretriever-cocondenser --output $output
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3619
            R@1K: 0.9735
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4350
            nDCG@10: 0.6837
            R@1K: 0.8078
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4710
            nDCG@10: 0.6972
            R@1K: 0.8555
  - name: openai-ada2
    display: "OpenAI ada2: pre-encoded queries"
    display-html: "OpenAI ada2: pre-encoded queries"
    command: python -m pyserini.search.faiss --threads 16 --batch-size 128 --index msmarco-v1-passage.openai-ada2 --topics $topics --encoded-queries openai-ada2-$topics --output $output
    topics:
      - topic_key: msmarco-passage-dev-subset
        eval_key: msmarco-passage-dev-subset
        scores:
          - MRR@10: 0.3435
            R@1K: 0.9858
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.4788
            nDCG@10: 0.7035
            R@1K: 0.8629
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4771
            nDCG@10: 0.6759
            R@1K: 0.8705
  - name: openai-ada2-hyde
    display: "HyDE-OpenAI ada2: pre-encoded queries"
    display-html: "HyDE-OpenAI ada2: pre-encoded queries"
    command: python -m pyserini.search.faiss --threads 16 --batch-size 128 --index msmarco-v1-passage.openai-ada2 --topics $topics --encoded-queries openai-ada2-$topics-hyde --output $output
    topics:
      - topic_key: dl19-passage
        eval_key: dl19-passage
        scores:
          - MAP: 0.5125
            nDCG@10: 0.7163
            R@1K: 0.9002
      - topic_key: dl20
        eval_key: dl20-passage
        scores:
          - MAP: 0.4938
            nDCG@10: 0.6666
            R@1K: 0.8919