|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional |
|
|
|
import torch |
|
from transformers import PreTrainedModel, RobertaConfig, RobertaModel, RobertaTokenizer |
|
|
|
from pyserini.encode import DocumentEncoder, QueryEncoder |
|
|
|
|
|
class AnceEncoder(PreTrainedModel): |
|
config_class = RobertaConfig |
|
base_model_prefix = 'ance_encoder' |
|
load_tf_weights = None |
|
_keys_to_ignore_on_load_missing = [r'position_ids'] |
|
_keys_to_ignore_on_load_unexpected = [r'pooler', r'classifier'] |
|
|
|
def __init__(self, config: RobertaConfig): |
|
super().__init__(config) |
|
self.config = config |
|
self.roberta = RobertaModel(config) |
|
self.embeddingHead = torch.nn.Linear(config.hidden_size, 768) |
|
self.norm = torch.nn.LayerNorm(768) |
|
self.init_weights() |
|
|
|
|
|
def _init_weights(self, module): |
|
""" Initialize the weights """ |
|
if isinstance(module, (torch.nn.Linear, torch.nn.Embedding)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
elif isinstance(module, torch.nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
if isinstance(module, torch.nn.Linear) and module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
def init_weights(self): |
|
self.roberta.init_weights() |
|
self.embeddingHead.apply(self._init_weights) |
|
self.norm.apply(self._init_weights) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
input_shape = input_ids.size() |
|
device = input_ids.device |
|
if attention_mask is None: |
|
attention_mask = ( |
|
torch.ones(input_shape, device=device) |
|
if input_ids is None |
|
else (input_ids != self.roberta.config.pad_token_id) |
|
) |
|
outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask) |
|
sequence_output = outputs.last_hidden_state |
|
pooled_output = sequence_output[:, 0, :] |
|
pooled_output = self.norm(self.embeddingHead(pooled_output)) |
|
return pooled_output |
|
|
|
|
|
class AnceDocumentEncoder(DocumentEncoder): |
|
def __init__(self, model_name, tokenizer_name=None, device='cuda:0'): |
|
self.device = device |
|
self.model = AnceEncoder.from_pretrained(model_name) |
|
self.model.to(self.device) |
|
self.tokenizer = RobertaTokenizer.from_pretrained(tokenizer_name or model_name) |
|
|
|
def encode(self, texts, titles=None, max_length=256, **kwargs): |
|
if titles is not None: |
|
texts = [f'{title} {text}' for title, text in zip(titles, texts)] |
|
inputs = self.tokenizer( |
|
texts, |
|
max_length=max_length, |
|
padding='longest', |
|
truncation=True, |
|
add_special_tokens=True, |
|
return_tensors='pt' |
|
) |
|
inputs.to(self.device) |
|
return self.model(inputs["input_ids"]).detach().cpu().numpy() |
|
|
|
|
|
class AnceQueryEncoder(QueryEncoder): |
|
|
|
def __init__(self, model_name: str, tokenizer_name: str = None, device: str = 'cpu'): |
|
self.device = device |
|
self.model = AnceEncoder.from_pretrained(model_name) |
|
self.model.to(self.device) |
|
self.tokenizer = RobertaTokenizer.from_pretrained(tokenizer_name or tokenizer_name) |
|
|
|
def encode(self, query: str, **kwargs): |
|
inputs = self.tokenizer( |
|
[query], |
|
max_length=64, |
|
padding='longest', |
|
truncation=True, |
|
add_special_tokens=True, |
|
return_tensors='pt' |
|
) |
|
inputs.to(self.device) |
|
embeddings = self.model(inputs["input_ids"]).detach().cpu().numpy() |
|
return embeddings.flatten() |
|
|