ONNX-Demo / pyserini /eval /evaluate_qa_overlap_retrieval.py
ArthurChen189's picture
upload pyserini
62977bb
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Most of the tokenization code here is copied from Facebook/DPR & DrQA codebase to avoid adding an extra dependency
"""
import argparse
import copy
import json
import logging
import re
import unicodedata
from tqdm import tqdm
import numpy as np
import os
import regex
import collections
logger = logging.getLogger(__name__)
DIRNAME = os.path.dirname(os.path.abspath(__file__))
# download dependencies
if not os.path.exists('data/nq-annotations.jsonl'):
ANNOTATIONS_TO_DOWNLOAD = [
('https://dl.fbaipublicfiles.com/qaoverlap/data/nq-annotations.jsonl','nq-annotations.jsonl'),
('https://dl.fbaipublicfiles.com/qaoverlap/data/triviaqa-annotations.jsonl', 'triviaqa-annotations.jsonl'),
('https://dl.fbaipublicfiles.com/qaoverlap/data/webquestions-annotations.jsonl','webquestions-annotations.jsonl')
]
for link, dest in ANNOTATIONS_TO_DOWNLOAD:
os.system(f'wget {link} -P data/')
ANNOTATION_PATHS = {
'tqa': os.path.join(DIRNAME, '../../data/triviaqa-annotations.jsonl'),
'nq': os.path.join(DIRNAME, '../../data/nq-annotations.jsonl'),
'webquestions': os.path.join(DIRNAME, '../../data/webquestions-annotations.jsonl'),
}
class Tokens(object):
"""A class to represent a list of tokenized text."""
TEXT = 0
TEXT_WS = 1
SPAN = 2
POS = 3
LEMMA = 4
NER = 5
def __init__(self, data, annotators, opts=None):
self.data = data
self.annotators = annotators
self.opts = opts or {}
def __len__(self):
"""The number of tokens."""
return len(self.data)
def slice(self, i=None, j=None):
"""Return a view of the list of tokens from [i, j)."""
new_tokens = copy.copy(self)
new_tokens.data = self.data[i: j]
return new_tokens
def untokenize(self):
"""Returns the original text (with whitespace reinserted)."""
return ''.join([t[self.TEXT_WS] for t in self.data]).strip()
def words(self, uncased=False):
"""Returns a list of the text of each token
Args:
uncased: lower cases text
"""
if uncased:
return [t[self.TEXT].lower() for t in self.data]
else:
return [t[self.TEXT] for t in self.data]
def offsets(self):
"""Returns a list of [start, end) character offsets of each token."""
return [t[self.SPAN] for t in self.data]
def pos(self):
"""Returns a list of part-of-speech tags of each token.
Returns None if this annotation was not included.
"""
if 'pos' not in self.annotators:
return None
return [t[self.POS] for t in self.data]
def lemmas(self):
"""Returns a list of the lemmatized text of each token.
Returns None if this annotation was not included.
"""
if 'lemma' not in self.annotators:
return None
return [t[self.LEMMA] for t in self.data]
def entities(self):
"""Returns a list of named-entity-recognition tags of each token.
Returns None if this annotation was not included.
"""
if 'ner' not in self.annotators:
return None
return [t[self.NER] for t in self.data]
def ngrams(self, n=1, uncased=False, filter_fn=None, as_strings=True):
"""Returns a list of all ngrams from length 1 to n.
Args:
n: upper limit of ngram length
uncased: lower cases text
filter_fn: user function that takes in an ngram list and returns
True or False to keep or not keep the ngram
as_string: return the ngram as a string vs list
"""
def _skip(gram):
if not filter_fn:
return False
return filter_fn(gram)
words = self.words(uncased)
ngrams = [(s, e + 1)
for s in range(len(words))
for e in range(s, min(s + n, len(words)))
if not _skip(words[s:e + 1])]
# Concatenate into strings
if as_strings:
ngrams = ['{}'.format(' '.join(words[s:e])) for (s, e) in ngrams]
return ngrams
def entity_groups(self):
"""Group consecutive entity tokens with the same NER tag."""
entities = self.entities()
if not entities:
return None
non_ent = self.opts.get('non_ent', 'O')
groups = []
idx = 0
while idx < len(entities):
ner_tag = entities[idx]
# Check for entity tag
if ner_tag != non_ent:
# Chomp the sequence
start = idx
while (idx < len(entities) and entities[idx] == ner_tag):
idx += 1
groups.append((self.slice(start, idx).untokenize(), ner_tag))
else:
idx += 1
return groups
class Tokenizer(object):
"""Base tokenizer class.
Tokenizers implement tokenize, which should return a Tokens class.
"""
def tokenize(self, text):
raise NotImplementedError
def shutdown(self):
pass
def __del__(self):
self.shutdown()
class SimpleTokenizer(Tokenizer):
ALPHA_NUM = r'[\p{L}\p{N}\p{M}]+'
NON_WS = r'[^\p{Z}\p{C}]'
def __init__(self, **kwargs):
"""
Args:
annotators: None or empty set (only tokenizes).
"""
self._regexp = regex.compile(
'(%s)|(%s)' % (self.ALPHA_NUM, self.NON_WS),
flags=regex.IGNORECASE + regex.UNICODE + regex.MULTILINE
)
if len(kwargs.get('annotators', {})) > 0:
logger.warning('%s only tokenizes! Skipping annotators: %s' %
(type(self).__name__, kwargs.get('annotators')))
self.annotators = set()
def tokenize(self, text):
data = []
matches = [m for m in self._regexp.finditer(text)]
for i in range(len(matches)):
# Get text
token = matches[i].group()
# Get whitespace
span = matches[i].span()
start_ws = span[0]
if i + 1 < len(matches):
end_ws = matches[i + 1].span()[0]
else:
end_ws = span[1]
# Format data
data.append((
token,
text[start_ws: end_ws],
span,
))
return Tokens(data, self.annotators)
def regex_match(text, pattern):
"""Test if a regex pattern is contained within a text."""
try:
pattern = re.compile(
pattern,
flags=re.IGNORECASE + re.UNICODE + re.MULTILINE,
)
except BaseException:
return False
return pattern.search(text) is not None
def _normalize(text):
return unicodedata.normalize('NFD', text)
def read_jsonl(path):
with open(path) as f:
return [json.loads(l) for l in f]
def read_annotations(annotations_data_path):
return read_jsonl(annotations_data_path)
def has_answers(text, answers, tokenizer, regex=False):
text = _normalize(text)
if regex:
for ans in answers:
ans = _normalize(ans)
if regex_match(text, ans):
return True
else:
text = tokenizer.tokenize(text).words(uncased=True)
for ans in answers:
ans = _normalize(ans)
ans = tokenizer.tokenize(ans).words(uncased=True)
for i in range(0, len(text) - len(ans) + 1):
if ans == text[i: i + len(ans)]:
return True
return False
def evaluate_retrieval(retrieval_file, topk, annotation_file, regex=False):
tokenizer = SimpleTokenizer()
retrieval = json.load(open(retrieval_file))
annotations = read_annotations(annotation_file)
annotation_ids = {int(a['id']): a['labels'] for a in annotations}
accuracy = { k : collections.defaultdict(list) for k in topk }
max_k = max(topk)
annotation_labels = [
'total',
'no_overlap',
'question_overlap',
'no_question_overlap',
'answer_overlap',
'no_answer_overlap',
'answer_overlap_only'
]
for qid in retrieval.keys():
answers = retrieval[qid]['answers']
contexts = retrieval[qid]['contexts']
has_ans_idx = max_k # first index in contexts that has answers
for idx, ctx in enumerate(contexts):
if idx >= max_k:
break
if 'has_answer' in ctx:
if ctx['has_answer']:
has_ans_idx = idx
break
else:
text = ctx['text'].split('\n')[1] # [0] is title, [1] is text
if has_answers(text, answers, tokenizer, regex):
has_ans_idx = idx
break
for annotation_label in annotation_labels:
if annotation_label in annotation_ids[int(qid)] or annotation_label == 'total' or \
(annotation_label == 'no_overlap' and ('no_question_overlap' in annotation_ids[int(qid)]) and ('no_answer_overlap' in annotation_ids[int(qid)])):
for k in topk:
accuracy[k][annotation_label].append(0 if has_ans_idx >= k else 1)
for k in topk:
for annotation_label in annotation_labels:
print(f'Top{k}\taccuracy: {np.mean(accuracy[k][annotation_label])} \t {annotation_label}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--retrieval', type=str, metavar='path',
help="Path to retrieval output file.")
parser.add_argument('--topk', type=int, nargs='+', help="topk to evaluate")
parser.add_argument('--regex', action='store_true', default=False, help="regex match")
parser.add_argument('--dataset_name', choices=['nq', 'tqa', 'webquestions'], type=str,
help='name of datset to evaluate on')
args = parser.parse_args()
evaluate_retrieval(args.retrieval, args.topk, ANNOTATION_PATHS[args.dataset_name], args.regex)