Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,080 Bytes
c1c0440 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import torch
import torch.nn
import torch.nn.functional as F
from .sh import eval_sh_bases
import numpy as np
import time
def get_ray_directions_blender(H, W, focal, center=None):
"""
Get ray directions for all pixels in camera coordinate.
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
ray-tracing-generating-camera-rays/standard-coordinate-systems
Inputs:
H, W, focal: image height, width and focal length
Outputs:
directions: (H, W, 3), the direction of the rays in camera coordinate
"""
grid = create_meshgrid(H, W, normalized_coordinates=False)[0]+0.5
i, j = grid.unbind(-1)
# the direction here is without +0.5 pixel centering as calibration is not so accurate
# see https://github.com/bmild/nerf/issues/24
cent = center if center is not None else [W / 2, H / 2]
directions = torch.stack([(i - cent[0]) / focal[0], -(j - cent[1]) / focal[1], -torch.ones_like(i)],
-1) # (H, W, 3)
return directions
def get_rays(directions, c2w):
"""
Get ray origin and normalized directions in world coordinate for all pixels in one image.
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
ray-tracing-generating-camera-rays/standard-coordinate-systems
Inputs:
directions: (H, W, 3) precomputed ray directions in camera coordinate
c2w: (3, 4) transformation matrix from camera coordinate to world coordinate
Outputs:
rays_o: (H*W, 3), the origin of the rays in world coordinate
rays_d: (H*W, 3), the normalized direction of the rays in world coordinate
"""
# Rotate ray directions from camera coordinate to the world coordinate
rays_d = directions @ c2w[:3, :3].T # (H, W, 3)
# rays_d = rays_d / torch.norm(rays_d, dim=-1, keepdim=True)
# The origin of all rays is the camera origin in world coordinate
rays_o = c2w[:3, 3].expand(rays_d.shape) # (H, W, 3)
rays_d = rays_d.view(-1, 3)
rays_o = rays_o.view(-1, 3)
return rays_o, rays_d
def positional_encoding(positions, freqs):
freq_bands = (2**torch.arange(freqs).float()).to(positions.device) # (F,)
pts = (positions[..., None] * freq_bands).reshape(
positions.shape[:-1] + (freqs * positions.shape[-1], )) # (..., DF)
pts = torch.cat([torch.sin(pts), torch.cos(pts)], dim=-1)
return pts
def raw2alpha(sigma, dist):
# sigma, dist [N_rays, N_samples]
alpha = 1. - torch.exp(-sigma*dist)
T = torch.cumprod(torch.cat([torch.ones(alpha.shape[0],alpha.shape[1], 1).to(alpha.device), 1. - alpha + 1e-10], -1), -1)
weights = alpha * T[:,:, :-1] # [N_rays, N_samples]
return alpha, weights, T[:,:,-1:]
def SHRender(xyz_sampled, viewdirs, features):
sh_mult = eval_sh_bases(2, viewdirs)[:, None]
rgb_sh = features.view(-1, 3, sh_mult.shape[-1])
rgb = torch.relu(torch.sum(sh_mult * rgb_sh, dim=-1) + 0.5)
return rgb
def RGBRender(xyz_sampled, viewdirs, features):
rgb = features
return rgb
class AlphaGridMask(torch.nn.Module):
def __init__(self, device, aabb, alpha_volume):
super(AlphaGridMask, self).__init__()
self.device = device
self.aabb=aabb.to(self.device)
self.aabbSize = self.aabb[1] - self.aabb[0]
self.invgridSize = 1.0/self.aabbSize * 2
self.alpha_volume = alpha_volume.view(1,1,*alpha_volume.shape[-3:])
self.gridSize = torch.LongTensor([alpha_volume.shape[-1],alpha_volume.shape[-2],alpha_volume.shape[-3]]).to(self.device)
def sample_alpha(self, xyz_sampled):
xyz_sampled = self.normalize_coord(xyz_sampled)
alpha_vals = F.grid_sample(self.alpha_volume, xyz_sampled.view(1,-1,1,1,3), align_corners=True).view(-1)
return alpha_vals
def normalize_coord(self, xyz_sampled):
return (xyz_sampled-self.aabb[0]) * self.invgridSize - 1
class MLPRender_Fea(torch.nn.Module):
def __init__(self,inChanel, viewpe=6, feape=6, featureC=128):
super(MLPRender_Fea, self).__init__()
self.in_mlpC = 2*viewpe*3 + 2*feape*inChanel + 3 + inChanel
self.viewpe = viewpe
self.feape = feape
layer1 = torch.nn.Linear(self.in_mlpC, featureC)
layer2 = torch.nn.Linear(featureC, featureC)
layer3 = torch.nn.Linear(featureC,3)
self.mlp = torch.nn.Sequential(layer1, torch.nn.ReLU(inplace=True), layer2, torch.nn.ReLU(inplace=True), layer3)
torch.nn.init.constant_(self.mlp[-1].bias, 0)
def forward(self, pts, viewdirs, features):
indata = [features, viewdirs]
if self.feape > 0:
indata += [positional_encoding(features, self.feape)]
if self.viewpe > 0:
indata += [positional_encoding(viewdirs, self.viewpe)]
mlp_in = torch.cat(indata, dim=-1)
rgb = self.mlp(mlp_in)
rgb = torch.sigmoid(rgb)
return rgb
class MLPRender_PE(torch.nn.Module):
def __init__(self,inChanel, viewpe=6, pospe=6, featureC=128):
super(MLPRender_PE, self).__init__()
self.in_mlpC = (3+2*viewpe*3)+ (3+2*pospe*3) + inChanel #
self.viewpe = viewpe
self.pospe = pospe
layer1 = torch.nn.Linear(self.in_mlpC, featureC)
layer2 = torch.nn.Linear(featureC, featureC)
layer3 = torch.nn.Linear(featureC,3)
self.mlp = torch.nn.Sequential(layer1, torch.nn.ReLU(inplace=True), layer2, torch.nn.ReLU(inplace=True), layer3)
torch.nn.init.constant_(self.mlp[-1].bias, 0)
def forward(self, pts, viewdirs, features):
indata = [features, viewdirs]
if self.pospe > 0:
indata += [positional_encoding(pts, self.pospe)]
if self.viewpe > 0:
indata += [positional_encoding(viewdirs, self.viewpe)]
mlp_in = torch.cat(indata, dim=-1)
rgb = self.mlp(mlp_in)
rgb = torch.sigmoid(rgb)
return rgb
class MLPRender(torch.nn.Module):
def __init__(self,inChanel, viewpe=6, featureC=128):
super(MLPRender, self).__init__()
self.in_mlpC = (3+2*viewpe*3) + inChanel
self.viewpe = viewpe
layer1 = torch.nn.Linear(self.in_mlpC, featureC)
layer2 = torch.nn.Linear(featureC, featureC)
layer3 = torch.nn.Linear(featureC,3)
self.mlp = torch.nn.Sequential(layer1, torch.nn.ReLU(inplace=True), layer2, torch.nn.ReLU(inplace=True), layer3)
torch.nn.init.constant_(self.mlp[-1].bias, 0)
def forward(self, pts, viewdirs, features):
indata = [features, viewdirs]
if self.viewpe > 0:
indata += [positional_encoding(viewdirs, self.viewpe)]
mlp_in = torch.cat(indata, dim=-1)
rgb = self.mlp(mlp_in)
rgb = torch.sigmoid(rgb)
return rgb
class TensorBase(torch.nn.Module):
def __init__(self, aabb, gridSize, density_n_comp = 16, appearance_n_comp = 48, app_dim = 27, density_dim = 8,
shadingMode = 'MLP_PE', alphaMask = None, near_far=[2.0,6.0],
density_shift = -10, alphaMask_thres=0.0001, distance_scale=25, rayMarch_weight_thres=0.0001,
pos_pe = 6, view_pe = 6, fea_pe = 6, featureC=128, step_ratio=0.5,
fea2denseAct = 'softplus'):
super(TensorBase, self).__init__()
self.density_n_comp = density_n_comp
self.app_n_comp = appearance_n_comp
self.app_dim = app_dim
self.density_dim=density_dim
self.aabb = aabb
self.alphaMask = alphaMask
#self.device=device
self.density_shift = density_shift
self.alphaMask_thres = alphaMask_thres
self.distance_scale = distance_scale
self.rayMarch_weight_thres = rayMarch_weight_thres
self.fea2denseAct = fea2denseAct
self.near_far = near_far
self.step_ratio = 0.9 #step_ratio原作0.5
self.update_stepSize(gridSize)
self.matMode = [[0,1], [0,2], [1,2]]
self.vecMode = [2, 1, 0]
self.comp_w = [1,1,1]
#self.init_svd_volume(gridSize[0], device)
self.shadingMode, self.pos_pe, self.view_pe, self.fea_pe, self.featureC = shadingMode, pos_pe, view_pe, fea_pe, featureC
self.init_render_func(shadingMode, pos_pe, view_pe, fea_pe, featureC)
def init_render_func(self, shadingMode, pos_pe, view_pe, fea_pe, featureC):
if shadingMode == 'MLP_PE':
self.renderModule = MLPRender_PE(self.app_dim, view_pe, pos_pe, featureC)
elif shadingMode == 'MLP_Fea':
self.renderModule = MLPRender_Fea(self.app_dim, view_pe, fea_pe, featureC)
elif shadingMode == 'MLP':
self.renderModule = MLPRender(self.app_dim, view_pe, featureC)
elif shadingMode == 'SH':
self.renderModule = SHRender
elif shadingMode == 'RGB':
assert self.app_dim == 3
self.renderModule = RGBRender
else:
print("Unrecognized shading module")
exit()
print("pos_pe", pos_pe, "view_pe", view_pe, "fea_pe", fea_pe)
print(self.renderModule)
def update_stepSize(self, gridSize):
self.aabbSize = self.aabb[1] - self.aabb[0]
self.invaabbSize = 2.0/self.aabbSize
self.gridSize= gridSize.float()
self.units=self.aabbSize / (self.gridSize-1)
self.stepSize=torch.mean(self.units)*self.step_ratio # TBD step_ratio? why so small 0.5
self.aabbDiag = torch.sqrt(torch.sum(torch.square(self.aabbSize)))
self.nSamples=int((self.aabbDiag / self.stepSize).item()) + 1
print("sampling step size: ", self.stepSize)
print("sampling number: ", self.nSamples)
def init_svd_volume(self, res, device):
pass
def compute_features(self, xyz_sampled):
pass
def compute_densityfeature(self, xyz_sampled):
pass
def compute_appfeature(self, xyz_sampled):
pass
def normalize_coord(self, xyz_sampled):
if xyz_sampled.device!=self.invaabbSize.device:
self.invaabbSize=self.invaabbSize.to(xyz_sampled.device)
return (xyz_sampled-self.aabb[0]) * self.invaabbSize - 1
def get_optparam_groups(self, lr_init_spatial = 0.02, lr_init_network = 0.001):
pass
def sample_ray_ndc(self, rays_o, rays_d, is_train=True, N_samples=-1):
N_samples = N_samples if N_samples > 0 else self.nSamples
near, far = self.near_far
interpx = torch.linspace(near, far, N_samples).unsqueeze(0).to(rays_o)
if is_train:
interpx += torch.rand_like(interpx).to(rays_o) * ((far - near) / N_samples)
rays_pts = rays_o[..., None, :] + rays_d[..., None, :] * interpx[..., None]
mask_outbbox = ((self.aabb[0] > rays_pts) | (rays_pts > self.aabb[1])).any(dim=-1)
return rays_pts, interpx, ~mask_outbbox
def sample_ray(self, rays_o, rays_d, is_train=True, N_samples=-1):
N_samples = N_samples if N_samples>0 else self.nSamples
stepsize = self.stepSize
near, far = self.near_far
vec = torch.where(rays_d==0, torch.full_like(rays_d, 1e-6), rays_d)
rate_a = (self.aabb[1] - rays_o) / vec
rate_b = (self.aabb[0] - rays_o) / vec
t_min = torch.minimum(rate_a, rate_b).amax(-1).clamp(min=near, max=far)
rng = torch.arange(N_samples)[None,None].float()
if is_train:
rng = rng.repeat(rays_d.shape[-3],rays_d.shape[-2],1)
rng += torch.rand_like(rng[...,[0]])
step = stepsize * rng.to(rays_o.device)
interpx = (t_min[...,None] + step)
rays_pts = rays_o[...,None,:] + rays_d[...,None,:] * interpx[...,None]
mask_outbbox = ((self.aabb[0]>rays_pts) | (rays_pts>self.aabb[1])).any(dim=-1)
return rays_pts, interpx, ~mask_outbbox
def shrink(self, new_aabb, voxel_size):
pass
@torch.no_grad()
def getDenseAlpha(self,gridSize=None):
gridSize = self.gridSize if gridSize is None else gridSize
samples = torch.stack(torch.meshgrid(
torch.linspace(0, 1, gridSize[0]),
torch.linspace(0, 1, gridSize[1]),
torch.linspace(0, 1, gridSize[2]),
), -1).to(self.device)
dense_xyz = self.aabb[0] * (1-samples) + self.aabb[1] * samples
# dense_xyz = dense_xyz
# print(self.stepSize, self.distance_scale*self.aabbDiag)
alpha = torch.zeros_like(dense_xyz[...,0])
for i in range(gridSize[0]):
alpha[i] = self.compute_alpha(dense_xyz[i].view(-1,3), self.stepSize).view((gridSize[1], gridSize[2]))
return alpha, dense_xyz
def feature2density(self, density_features):
if self.fea2denseAct == "softplus":
return F.softplus(density_features+self.density_shift)
elif self.fea2denseAct == "relu":
return F.relu(density_features)
def compute_alpha(self, xyz_locs, length=1):
if self.alphaMask is not None:
alphas = self.alphaMask.sample_alpha(xyz_locs)
alpha_mask = alphas > 0
else:
alpha_mask = torch.ones_like(xyz_locs[:,0], dtype=bool)
sigma = torch.zeros(xyz_locs.shape[:-1], device=xyz_locs.device)
if alpha_mask.any():
xyz_sampled = self.normalize_coord(xyz_locs[alpha_mask])
sigma_feature = self.compute_densityfeature(xyz_sampled)
validsigma = self.feature2density(sigma_feature)
sigma[alpha_mask] = validsigma
alpha = 1 - torch.exp(-sigma*length).view(xyz_locs.shape[:-1])
return alpha
def forward(self, svd_volume, rays_o, rays_d, bg_color, white_bg=True, is_train=False, ndc_ray=False, N_samples=-1):
self.svd_volume=svd_volume
self.app_plane=svd_volume['app_planes']
self.app_line=svd_volume['app_lines']
self.basis_mat=svd_volume['basis_mat']
self.density_plane=svd_volume['density_planes']
self.density_line=svd_volume['density_lines']
B,V,H,W,_=rays_o.shape
rays_o=rays_o.reshape(B,-1, 3)
rays_d=rays_d.reshape(B,-1, 3)
if ndc_ray:
pass
else:
#B,H*W*V,sample_num,3
xyz_sampled, z_vals, ray_valid = self.sample_ray(rays_o, rays_d, is_train=is_train,N_samples=N_samples)
dists = torch.cat((z_vals[..., 1:] - z_vals[..., :-1], torch.zeros_like(z_vals[..., :1])), dim=-1)
rays_d = rays_d.unsqueeze(-2).expand(xyz_sampled.shape)
xyz_sampled = self.normalize_coord(xyz_sampled)
sigma_feature = self.compute_densityfeature(xyz_sampled)
sigma = self.feature2density(sigma_feature)
alpha, weight, bg_weight = raw2alpha(sigma, dists)
app_features = self.compute_appfeature(xyz_sampled)
rgbs = self.renderModule(xyz_sampled, rays_d, app_features)
#rgb[app_mask] = valid_rgbs
acc_map = torch.sum(weight, -1)
rgb_map = torch.sum(weight[..., None] * rgbs, -2)
if white_bg or (is_train and torch.rand((1,))<0.5):
rgb_map = rgb_map + (1. - acc_map[..., None])
rgb_map = rgb_map.clamp(0,1)
rgb_map=rgb_map.view(B,V,H,W,3).permute(0,1,4,2,3)
with torch.no_grad():
depth_map = torch.sum(weight * z_vals, -1)
depth_map=depth_map.view(B,V,H,W,1).permute(0,1,4,2,3)
acc_map=acc_map.view(B,V,H,W,1).permute(0,1,4,2,3)
results = {
'image':rgb_map,
'alpha':acc_map,
'depth_map':depth_map
}
return results # rgb, sigma, alpha, weight, bg_weight
|