Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import cv2 | |
import random | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.transforms.functional as TF | |
from torch.utils.data import Dataset | |
from PIL import Image | |
import json | |
from torchvision.transforms import v2 | |
import tarfile | |
import kiui | |
from core.options import Options | |
from core.utils import get_rays, grid_distortion, orbit_camera_jitter | |
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) | |
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1" | |
class GobjaverseDataset(Dataset): | |
def _warn(self): | |
raise NotImplementedError('this dataset is just an example and cannot be used directly, you should modify it to your own setting! (search keyword TODO)') | |
def __init__(self, opt: Options, training=True): | |
self.opt = opt | |
self.training = training | |
if opt.over_fit: | |
data_list_path=opt.data_debug_list | |
else: | |
data_list_path=opt.data_list_path | |
# TODO: load the list of objects for training | |
self.items = [] | |
with open(data_list_path, 'r') as f: | |
data = json.load(f) | |
for item in data: | |
self.items.append(item) | |
# naive split | |
if not opt.over_fit: | |
if self.training: | |
self.items = self.items[:-self.opt.batch_size] | |
else: | |
self.items = self.items[-self.opt.batch_size:] | |
else: | |
self.opt.batch_size=len(self.items) | |
self.opt.num_workers=0 | |
# default camera intrinsics | |
self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy)) | |
self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32) | |
self.proj_matrix[0, 0] = 1 / self.tan_half_fov | |
self.proj_matrix[1, 1] = 1 / self.tan_half_fov | |
self.proj_matrix[2, 2] = (self.opt.zfar + self.opt.znear) / (self.opt.zfar - self.opt.znear) | |
self.proj_matrix[3, 2] = - (self.opt.zfar * self.opt.znear) / (self.opt.zfar - self.opt.znear) | |
self.proj_matrix[2, 3] = 1 | |
def __len__(self): | |
return len(self.items) | |
def __getitem__(self, idx): | |
uid = self.items[idx] | |
results = {} | |
# load num_views images | |
images = [] | |
albedos = [] | |
normals = [] | |
depths = [] | |
masks = [] | |
cam_poses = [] | |
vid_cnt = 0 | |
# TODO: choose views, based on your rendering settings | |
if self.training: | |
# input views are in (36, 72), other views are randomly selected | |
if self.opt.mvdream_or_zero123: | |
vids = [0,30,12,36,27,6,33,18][:self.opt.num_input_views] + np.random.permutation(24).tolist() | |
else: | |
vids = [0,29,8,33,16,37,2,10][:self.opt.num_input_views] + np.random.permutation(24).tolist() | |
else: | |
# fixed views | |
if self.opt.mvdream_or_zero123: | |
vids = [0,30,12,36,27,6,33,18]#np.arange(0, 24, 6).tolist() + np.arange(27, 40, 3).tolist() | |
else: | |
vids = [0,29,8,33,16,37,2,10,18,28] | |
for vid in vids: | |
#try: | |
uid_last = uid.split('/')[1] | |
if self.opt.rar_data: | |
tar_path = os.path.join(self.opt.data_path, f"{uid}.tar") | |
image_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}.png") | |
meta_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}.json") | |
albedo_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_albedo.png") # black bg... | |
# mr_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_mr.png") | |
nd_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_nd.exr") | |
with tarfile.open(tar_path, 'r') as tar: | |
with tar.extractfile(image_path) as f: | |
image = np.frombuffer(f.read(), np.uint8) | |
with tar.extractfile(albedo_path) as f: | |
albedo = np.frombuffer(f.read(), np.uint8) | |
with tar.extractfile(meta_path) as f: | |
meta = json.loads(f.read().decode()) | |
with tar.extractfile(nd_path) as f: | |
nd = np.frombuffer(f.read(), np.uint8) | |
image = torch.from_numpy(cv2.imdecode(image, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1] | |
albedo = torch.from_numpy(cv2.imdecode(albedo, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1] | |
else: | |
image_path = os.path.join(self.opt.data_path,uid, f"{vid:05d}/{vid:05d}.png") | |
meta_path = os.path.join(self.opt.data_path,uid, f"{vid:05d}/{vid:05d}.json") | |
# albedo_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_albedo.png") # black bg... | |
# mr_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_mr.png") | |
nd_path = os.path.join(self.opt.data_path,uid, f"{vid:05d}/{vid:05d}_nd.exr") | |
albedo_path = os.path.join(self.opt.data_path,uid, f"{vid:05d}/{vid:05d}_albedo.png") | |
# 读取图片并转换为np.uint8类型的数组 | |
with open(image_path, 'rb') as f: | |
image = np.frombuffer(f.read(), dtype=np.uint8) | |
with open(albedo_path, 'rb') as f: | |
albedo = np.frombuffer(f.read(), dtype=np.uint8) | |
# 读取JSON文件作为元数据 | |
with open(meta_path, 'r') as f: | |
meta = json.load(f) | |
# 读取图片并转换为np.uint8类型的数组 | |
with open(nd_path, 'rb') as f: | |
nd = np.frombuffer(f.read(), np.uint8) | |
image = torch.from_numpy(cv2.imdecode(image, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1] | |
albedo = torch.from_numpy(cv2.imdecode(albedo, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) | |
c2w = np.eye(4) | |
c2w[:3, 0] = np.array(meta['x']) | |
c2w[:3, 1] = np.array(meta['y']) | |
c2w[:3, 2] = np.array(meta['z']) | |
c2w[:3, 3] = np.array(meta['origin']) | |
c2w = torch.tensor(c2w, dtype=torch.float32).reshape(4, 4) | |
nd = cv2.imdecode(nd, cv2.IMREAD_UNCHANGED).astype(np.float32) # [512, 512, 4] in [-1, 1] | |
normal = nd[..., :3] # in [-1, 1], bg is [0, 0, 1] | |
depth = nd[..., 3] # in [0, +?), bg is 0 | |
# rectify normal directions | |
normal = normal[..., ::-1] | |
normal[..., 0] *= -1 | |
normal = torch.from_numpy(normal.astype(np.float32)).nan_to_num_(0) # there are nans in gt normal... | |
depth = torch.from_numpy(depth.astype(np.float32)).nan_to_num_(0) | |
# except Exception as e: | |
# # print(f'[WARN] dataset {uid} {vid}: {e}') | |
# continue | |
# blender world + opencv cam --> opengl world & cam | |
# world transform, 只要坐标系手系相同,不转不影响画图,会影响normal的着色 | |
c2w[1] *= -1 | |
c2w[[1, 2]] = c2w[[2, 1]] | |
# cam transform | |
c2w[:3, 1:3] *= -1 # invert up and forward direction | |
image = image.permute(2, 0, 1) # [4, 512, 512] | |
mask = image[3:4] # [1, 512, 512] | |
image = image[:3] * mask + (1 - mask) # [3, 512, 512], to white bg | |
image = image[[2,1,0]].contiguous() # bgr to rgb | |
# albdeo | |
albedo = albedo.permute(2, 0, 1) # [4, 512, 512] | |
albedo = albedo[:3] * mask + (1 - mask) # [3, 512, 512], to white bg | |
albedo = albedo[[2,1,0]].contiguous() # bgr to rgb | |
normal = normal.permute(2, 0, 1) # [3, 512, 512] | |
normal = normal * mask # to [0, 0, 0] bg | |
images.append(image) | |
albedos.append(albedo) | |
normals.append(normal) | |
depths.append(depth) | |
masks.append(mask.squeeze(0)) | |
cam_poses.append(c2w) | |
vid_cnt += 1 | |
if vid_cnt == self.opt.num_views: | |
break | |
if vid_cnt < self.opt.num_views: | |
print(f'[WARN] dataset {uid}: not enough valid views, only {vid_cnt} views found!') | |
n = self.opt.num_views - vid_cnt | |
images = images + [images[-1]] * n | |
normals = normals + [normals[-1]] * n | |
depths = depths + [depths[-1]] * n | |
masks = masks + [masks[-1]] * n | |
cam_poses = cam_poses + [cam_poses[-1]] * n | |
images = torch.stack(images, dim=0) # [V, 3, H, W] | |
albedos = torch.stack(albedos, dim=0) # [V, 3, H, W] | |
normals = torch.stack(normals, dim=0) # [V, 3, H, W] | |
depths = torch.stack(depths, dim=0) # [V, H, W] | |
masks = torch.stack(masks, dim=0) # [V, H, W] | |
cam_poses = torch.stack(cam_poses, dim=0) # [V, 4, 4] | |
# normalized camera feats as in paper (transform the first pose to a fixed position) | |
radius = torch.norm(cam_poses[0, :3, 3]) | |
cam_poses[:, :3, 3] *= self.opt.cam_radius / radius | |
transform = torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, self.opt.cam_radius], [0, 0, 0, 1]], dtype=torch.float32) @ torch.inverse(cam_poses[0]) | |
cam_poses = transform.unsqueeze(0) @ cam_poses # [V, 4, 4] | |
cam_poses_input = cam_poses[:self.opt.num_input_views].clone() | |
# 模拟的设定input size,原图512可以模拟输入320 | |
images = F.interpolate(images, size=(self.opt.input_size, self.opt.input_size), mode='bilinear', align_corners=False) # [V, C, H, W] | |
albedos = F.interpolate(albedos, size=(self.opt.input_size, self.opt.input_size), mode='bilinear', align_corners=False) | |
target_images = v2.functional.resize( | |
images, self.opt.output_size, interpolation=3, antialias=True).clamp(0, 1) | |
target_albedos = v2.functional.resize( | |
albedos, self.opt.output_size, interpolation=3, antialias=True).clamp(0, 1) | |
# target_depths = v2.functional.resize( | |
# target_depths, render_size, interpolation=0, antialias=True) | |
target_alphas = v2.functional.resize( | |
masks.unsqueeze(1), self.opt.output_size, interpolation=0, antialias=True) | |
#target gt | |
results['images_output']=target_images | |
results['albedos_output']=target_albedos | |
results['masks_output']=target_alphas | |
# data augmentation condition input image | |
images_input = images[:self.opt.num_input_views].clone() | |
if self.training: | |
# apply random grid distortion to simulate 3D inconsistency | |
if random.random() < self.opt.prob_grid_distortion: | |
images_input[1:] = grid_distortion(images_input[1:]) | |
# apply camera jittering (only to input!) | |
if random.random() < self.opt.prob_cam_jitter: | |
cam_poses_input[1:] = orbit_camera_jitter(cam_poses_input[1:]) | |
#images_input = TF.normalize(images_input, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) | |
results['input']=images_input #input view images, unused for tranformer based | |
#results['input'] = None # for gs based mesh | |
#for transformer hard code size | |
images_input_vit = F.interpolate(images_input, size=(224, 224), mode='bilinear', align_corners=False) | |
#images_input_vit = TF.normalize(images_input_vit, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) | |
results['input_vit']=images_input_vit | |
cam_view = torch.inverse(cam_poses)#.transpose(1, 2) #w2c | |
cam_pos = - cam_poses[:, :3, 3] | |
results['w2c'] = cam_view | |
results['cam_pos'] = cam_pos | |
#lrm用的是内参和外参的混合,这里先直接用外参试下, 实验可行 | |
results['source_camera']=cam_poses_input | |
return results |