Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import pytorch_lightning as pl | |
from tqdm import tqdm | |
from torchvision.transforms import v2 | |
from torchvision.utils import make_grid, save_image | |
from einops import rearrange | |
from src.utils.train_util import instantiate_from_config | |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, DDPMScheduler, UNet2DConditionModel | |
from .pipeline import RefOnlyNoisedUNet | |
def scale_latents(latents): | |
latents = (latents - 0.22) * 0.75 | |
return latents | |
def unscale_latents(latents): | |
latents = latents / 0.75 + 0.22 | |
return latents | |
def scale_image(image): | |
image = image * 0.5 / 0.8 | |
return image | |
def unscale_image(image): | |
image = image / 0.5 * 0.8 | |
return image | |
def extract_into_tensor(a, t, x_shape): | |
b, *_ = t.shape | |
out = a.gather(-1, t) | |
return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
class MVDiffusion(pl.LightningModule): | |
def __init__( | |
self, | |
stable_diffusion_config, | |
drop_cond_prob=0.1, | |
): | |
super(MVDiffusion, self).__init__() | |
self.drop_cond_prob = drop_cond_prob | |
self.register_schedule() | |
# init modules | |
pipeline = DiffusionPipeline.from_pretrained(**stable_diffusion_config) | |
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( | |
pipeline.scheduler.config, timestep_spacing='trailing' | |
) | |
self.pipeline = pipeline | |
train_sched = DDPMScheduler.from_config(self.pipeline.scheduler.config) | |
if isinstance(self.pipeline.unet, UNet2DConditionModel): | |
self.pipeline.unet = RefOnlyNoisedUNet(self.pipeline.unet, train_sched, self.pipeline.scheduler) | |
self.train_scheduler = train_sched # use ddpm scheduler during training | |
self.unet = pipeline.unet | |
# validation output buffer | |
self.validation_step_outputs = [] | |
def register_schedule(self): | |
self.num_timesteps = 1000 | |
# replace scaled_linear schedule with linear schedule as Zero123++ | |
beta_start = 0.00085 | |
beta_end = 0.0120 | |
betas = torch.linspace(beta_start, beta_end, 1000, dtype=torch.float32) | |
alphas = 1. - betas | |
alphas_cumprod = torch.cumprod(alphas, dim=0) | |
alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=torch.float64), alphas_cumprod[:-1]], 0) | |
self.register_buffer('betas', betas.float()) | |
self.register_buffer('alphas_cumprod', alphas_cumprod.float()) | |
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev.float()) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod).float()) | |
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1 - alphas_cumprod).float()) | |
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod).float()) | |
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1).float()) | |
def on_fit_start(self): | |
device = torch.device(f'cuda:{self.global_rank}') | |
self.pipeline.to(device) | |
if self.global_rank == 0: | |
os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True) | |
os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True) | |
def prepare_batch_data(self, batch): | |
# prepare stable diffusion input | |
cond_imgs = batch['cond_imgs'] # (B, C, H, W) | |
cond_imgs = cond_imgs.to(self.device) | |
# random resize the condition image | |
cond_size = np.random.randint(128, 513) | |
cond_imgs = v2.functional.resize(cond_imgs, cond_size, interpolation=3, antialias=True).clamp(0, 1) | |
target_imgs = batch['target_imgs'] # (B, 6, C, H, W) | |
target_imgs = v2.functional.resize(target_imgs, 320, interpolation=3, antialias=True).clamp(0, 1) | |
target_imgs = rearrange(target_imgs, 'b (x y) c h w -> b c (x h) (y w)', x=3, y=2) # (B, C, 3H, 2W) | |
target_imgs = target_imgs.to(self.device) | |
return cond_imgs, target_imgs | |
def forward_vision_encoder(self, images): | |
dtype = next(self.pipeline.vision_encoder.parameters()).dtype | |
image_pil = [v2.functional.to_pil_image(images[i]) for i in range(images.shape[0])] | |
image_pt = self.pipeline.feature_extractor_clip(images=image_pil, return_tensors="pt").pixel_values | |
image_pt = image_pt.to(device=self.device, dtype=dtype) | |
global_embeds = self.pipeline.vision_encoder(image_pt, output_hidden_states=False).image_embeds | |
global_embeds = global_embeds.unsqueeze(-2) | |
encoder_hidden_states = self.pipeline._encode_prompt("", self.device, 1, False)[0] | |
ramp = global_embeds.new_tensor(self.pipeline.config.ramping_coefficients).unsqueeze(-1) | |
encoder_hidden_states = encoder_hidden_states + global_embeds * ramp | |
return encoder_hidden_states | |
def encode_condition_image(self, images): | |
dtype = next(self.pipeline.vae.parameters()).dtype | |
image_pil = [v2.functional.to_pil_image(images[i]) for i in range(images.shape[0])] | |
image_pt = self.pipeline.feature_extractor_vae(images=image_pil, return_tensors="pt").pixel_values | |
image_pt = image_pt.to(device=self.device, dtype=dtype) | |
latents = self.pipeline.vae.encode(image_pt).latent_dist.sample() | |
return latents | |
def encode_target_images(self, images): | |
dtype = next(self.pipeline.vae.parameters()).dtype | |
# equals to scaling images to [-1, 1] first and then call scale_image | |
images = (images - 0.5) / 0.8 # [-0.625, 0.625] | |
posterior = self.pipeline.vae.encode(images.to(dtype)).latent_dist | |
latents = posterior.sample() * self.pipeline.vae.config.scaling_factor | |
latents = scale_latents(latents) | |
return latents | |
def forward_unet(self, latents, t, prompt_embeds, cond_latents): | |
dtype = next(self.pipeline.unet.parameters()).dtype | |
latents = latents.to(dtype) | |
prompt_embeds = prompt_embeds.to(dtype) | |
cond_latents = cond_latents.to(dtype) | |
cross_attention_kwargs = dict(cond_lat=cond_latents) | |
pred_noise = self.pipeline.unet( | |
latents, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
return pred_noise | |
def predict_start_from_z_and_v(self, x_t, t, v): | |
return ( | |
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t - | |
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v | |
) | |
def get_v(self, x, noise, t): | |
return ( | |
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise - | |
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x | |
) | |
def training_step(self, batch, batch_idx): | |
# get input | |
cond_imgs, target_imgs = self.prepare_batch_data(batch) | |
# sample random timestep | |
B = cond_imgs.shape[0] | |
t = torch.randint(0, self.num_timesteps, size=(B,)).long().to(self.device) | |
# classifier-free guidance | |
if np.random.rand() < self.drop_cond_prob: | |
prompt_embeds = self.pipeline._encode_prompt([""]*B, self.device, 1, False) | |
cond_latents = self.encode_condition_image(torch.zeros_like(cond_imgs)) | |
else: | |
prompt_embeds = self.forward_vision_encoder(cond_imgs) | |
cond_latents = self.encode_condition_image(cond_imgs) | |
latents = self.encode_target_images(target_imgs) | |
noise = torch.randn_like(latents) | |
latents_noisy = self.train_scheduler.add_noise(latents, noise, t) | |
v_pred = self.forward_unet(latents_noisy, t, prompt_embeds, cond_latents) | |
v_target = self.get_v(latents, noise, t) | |
loss, loss_dict = self.compute_loss(v_pred, v_target) | |
# logging | |
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
self.log("global_step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
lr = self.optimizers().param_groups[0]['lr'] | |
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
if self.global_step % 500 == 0 and self.global_rank == 0: | |
with torch.no_grad(): | |
latents_pred = self.predict_start_from_z_and_v(latents_noisy, t, v_pred) | |
latents = unscale_latents(latents_pred) | |
images = unscale_image(self.pipeline.vae.decode(latents / self.pipeline.vae.config.scaling_factor, return_dict=False)[0]) # [-1, 1] | |
images = (images * 0.5 + 0.5).clamp(0, 1) | |
images = torch.cat([target_imgs, images], dim=-2) | |
grid = make_grid(images, nrow=images.shape[0], normalize=True, value_range=(0, 1)) | |
save_image(grid, os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png')) | |
return loss | |
def compute_loss(self, noise_pred, noise_gt): | |
loss = F.mse_loss(noise_pred, noise_gt) | |
prefix = 'train' | |
loss_dict = {} | |
loss_dict.update({f'{prefix}/loss': loss}) | |
return loss, loss_dict | |
def validation_step(self, batch, batch_idx): | |
# get input | |
cond_imgs, target_imgs = self.prepare_batch_data(batch) | |
images_pil = [v2.functional.to_pil_image(cond_imgs[i]) for i in range(cond_imgs.shape[0])] | |
outputs = [] | |
for cond_img in images_pil: | |
latent = self.pipeline(cond_img, num_inference_steps=75, output_type='latent').images | |
image = unscale_image(self.pipeline.vae.decode(latent / self.pipeline.vae.config.scaling_factor, return_dict=False)[0]) # [-1, 1] | |
image = (image * 0.5 + 0.5).clamp(0, 1) | |
outputs.append(image) | |
outputs = torch.cat(outputs, dim=0).to(self.device) | |
images = torch.cat([target_imgs, outputs], dim=-2) | |
self.validation_step_outputs.append(images) | |
def on_validation_epoch_end(self): | |
images = torch.cat(self.validation_step_outputs, dim=0) | |
all_images = self.all_gather(images) | |
all_images = rearrange(all_images, 'r b c h w -> (r b) c h w') | |
if self.global_rank == 0: | |
grid = make_grid(all_images, nrow=8, normalize=True, value_range=(0, 1)) | |
save_image(grid, os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png')) | |
self.validation_step_outputs.clear() # free memory | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
optimizer = torch.optim.AdamW(self.unet.parameters(), lr=lr) | |
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 3000, eta_min=lr/4) | |
return {'optimizer': optimizer, 'lr_scheduler': scheduler} | |