import os import cv2 import random import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms.functional as TF from torch.utils.data import Dataset from PIL import Image import json from torchvision.transforms import v2 import tarfile import kiui from core.options import Options from core.utils import get_rays, grid_distortion, orbit_camera_jitter IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1" class GobjaverseDataset(Dataset): def _warn(self): raise NotImplementedError('this dataset is just an example and cannot be used directly, you should modify it to your own setting! (search keyword TODO)') def __init__(self, opt: Options, training=True): self.total_epoch = 30 self.cur_epoch = 0 self.cur_itrs = 0 # 不切片的比例,原始尺寸可以保持稳定训练 self.original_scale = 0.1 self.bata_line_scale = self.original_scale * 0.5 self.beta_line_ites = 3000 self.opt = opt self.training = training if opt.over_fit: data_list_path=opt.data_debug_list else: data_list_path=opt.data_list_path # TODO: load the list of objects for training self.items = [] with open(data_list_path, 'r') as f: data = json.load(f) for item in data: self.items.append(item) # naive split if not opt.over_fit: if self.training: self.items = self.items[:-self.opt.batch_size] else: self.items = self.items[-self.opt.batch_size:] else: self.opt.batch_size=len(self.items) self.opt.num_workers=0 # default camera intrinsics self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy)) self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32) self.proj_matrix[0, 0] = 1 / self.tan_half_fov self.proj_matrix[1, 1] = 1 / self.tan_half_fov self.proj_matrix[2, 2] = (self.opt.zfar + self.opt.znear) / (self.opt.zfar - self.opt.znear) self.proj_matrix[3, 2] = - (self.opt.zfar * self.opt.znear) / (self.opt.zfar - self.opt.znear) self.proj_matrix[2, 3] = 1 def __len__(self): return len(self.items) def get_random_crop(self, batch_masks, minsize): n, h, w = batch_masks.shape # 初始化一个全为-1的张量,用于存储随机裁剪区域的左上角坐标 crop_topleft_points = torch.full((n, 4), -1, dtype=torch.int) for i, mask in enumerate(batch_masks): # 获取非零坐标 nonzero_coords = torch.nonzero(mask, as_tuple=False) if nonzero_coords.size(0) == 0: crop_topleft_points[i] = torch.tensor([0, 0, minsize, minsize]) continue # 如果没有非零元素,保留初始化时的-1值 # 计算最小和最大坐标 min_coords = torch.min(nonzero_coords, dim=0)[0] max_coords = torch.max(nonzero_coords, dim=0)[0] y_min, x_min = min_coords y_max, x_max = max_coords # 确保包围盒不小于 minsize * minsize y_center = (y_min + y_max) // 2 x_center = (x_min + x_max) // 2 y_min = max(0, y_center - (minsize // 2)) y_max = min(h - 1, y_center + (minsize // 2)) x_min = max(0, x_center - (minsize // 2)) x_max = min(w - 1, x_center + (minsize // 2)) # 如果计算后仍然小于 minsize,则调整 if (y_max - y_min + 1) < minsize: y_min = max(0, y_max - minsize + 1) y_max = y_min + minsize - 1 if (x_max - x_min + 1) < minsize: x_min = max(0, x_max - minsize + 1) x_max = x_min + minsize - 1 # 随机选择左上角点 top_y = torch.randint(y_min, y_max - minsize + 2, (1,)).item() # 确保裁剪区域在包围盒内 top_x = torch.randint(x_min, x_max - minsize + 2, (1,)).item() crop_topleft_points[i] = torch.tensor([top_x, top_y, minsize, minsize]) return crop_topleft_points def __getitem__(self, idx): uid = self.items[idx] results = {} # load num_views images images = [] albedos = [] normals = [] depths = [] masks = [] cam_poses = [] vid_cnt = 0 # TODO: choose views, based on your rendering settings if self.training: if self.opt.is_fix_views: if self.opt.mvdream_or_zero123: vids = [0,30,12,36,27,6,33,18][:self.opt.num_input_views] + np.random.permutation(24).tolist() else: vids = [0,29,8,33,16,37,2,10,18,28][:self.opt.num_input_views] + np.random.permutation(24).tolist() else: vids = np.random.permutation(np.arange(0, 36))[:self.opt.num_input_views].tolist() + np.random.permutation(36).tolist() else: #fixed views # if self.opt.mvdream_or_zero123: # vids = np.arange(0, 40, 6).tolist() + np.arange(100).tolist() # else: # vids = np.arange(0, 40, 4).tolist() + np.arange(100).tolist() if self.opt.mvdream_or_zero123: vids = [0,30,12,36,27,6,33,18]#np.arange(0, 24, 6).tolist() + np.arange(27, 40, 3).tolist() else: vids = [0,29,8,33,16,37,2,10,18,28] for vid in vids: #try: uid_last = uid.split('/')[1] if self.opt.rar_data: tar_path = os.path.join(self.opt.data_path, f"{uid}.tar") image_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}.png") meta_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}.json") albedo_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_albedo.png") # black bg... # mr_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_mr.png") nd_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_nd.exr") with tarfile.open(tar_path, 'r') as tar: with tar.extractfile(image_path) as f: image = np.frombuffer(f.read(), np.uint8) with tar.extractfile(albedo_path) as f: albedo = np.frombuffer(f.read(), np.uint8) with tar.extractfile(meta_path) as f: meta = json.loads(f.read().decode()) with tar.extractfile(nd_path) as f: nd = np.frombuffer(f.read(), np.uint8) image = torch.from_numpy(cv2.imdecode(image, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1] albedo = torch.from_numpy(cv2.imdecode(albedo, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1] else: image_path = os.path.join(self.opt.data_path,uid, f"{vid:05d}/{vid:05d}.png") meta_path = os.path.join(self.opt.data_path,uid, f"{vid:05d}/{vid:05d}.json") # albedo_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_albedo.png") # black bg... # mr_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_mr.png") nd_path = os.path.join(self.opt.data_path,uid, f"{vid:05d}/{vid:05d}_nd.exr") albedo_path = os.path.join(self.opt.data_path,uid, f"{vid:05d}/{vid:05d}_albedo.png") # 读取图片并转换为np.uint8类型的数组 with open(image_path, 'rb') as f: image = np.frombuffer(f.read(), dtype=np.uint8) with open(albedo_path, 'rb') as f: albedo = np.frombuffer(f.read(), dtype=np.uint8) # 读取JSON文件作为元数据 with open(meta_path, 'r') as f: meta = json.load(f) # 读取图片并转换为np.uint8类型的数组 with open(nd_path, 'rb') as f: nd = np.frombuffer(f.read(), np.uint8) image = torch.from_numpy(cv2.imdecode(image, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1] albedo = torch.from_numpy(cv2.imdecode(albedo, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) c2w = np.eye(4) c2w[:3, 0] = np.array(meta['x']) c2w[:3, 1] = np.array(meta['y']) c2w[:3, 2] = np.array(meta['z']) c2w[:3, 3] = np.array(meta['origin']) c2w = torch.tensor(c2w, dtype=torch.float32).reshape(4, 4) nd = cv2.imdecode(nd, cv2.IMREAD_UNCHANGED).astype(np.float32) # [512, 512, 4] in [-1, 1] normal = nd[..., :3] # in [-1, 1], bg is [0, 0, 1] depth = nd[..., 3] # in [0, +?), bg is 0 # rectify normal directions normal = normal[..., ::-1] normal[..., 0] *= -1 normal = torch.from_numpy(normal.astype(np.float32)).nan_to_num_(0) # there are nans in gt normal... depth = torch.from_numpy(depth.astype(np.float32)).nan_to_num_(0) # except Exception as e: # # print(f'[WARN] dataset {uid} {vid}: {e}') # continue # blender world + opencv cam --> opengl world & cam c2w[1] *= -1 c2w[[1, 2]] = c2w[[2, 1]] c2w[:3, 1:3] *= -1 # invert up and forward direction image = image.permute(2, 0, 1) # [4, 512, 512] mask = image[3:4] # [1, 512, 512] image = image[:3] * mask + (1 - mask) # [3, 512, 512], to white bg image = image[[2,1,0]].contiguous() # bgr to rgb # albdeo albedo = albedo.permute(2, 0, 1) # [4, 512, 512] albedo = albedo[:3] * mask + (1 - mask) # [3, 512, 512], to white bg albedo = albedo[[2,1,0]].contiguous() # bgr to rgb normal = normal.permute(2, 0, 1) # [3, 512, 512] normal = normal * mask # to [0, 0, 0] bg images.append(image) albedos.append(albedo) normals.append(normal) depths.append(depth) masks.append(mask.squeeze(0)) cam_poses.append(c2w) vid_cnt += 1 if vid_cnt == self.opt.num_views: break if vid_cnt < self.opt.num_views: print(f'[WARN] dataset {uid}: not enough valid views, only {vid_cnt} views found!') n = self.opt.num_views - vid_cnt images = images + [images[-1]] * n normals = normals + [normals[-1]] * n depths = depths + [depths[-1]] * n masks = masks + [masks[-1]] * n cam_poses = cam_poses + [cam_poses[-1]] * n images = torch.stack(images, dim=0) # [V, 3, H, W] albedos = torch.stack(albedos, dim=0) # [V, 3, H, W] normals = torch.stack(normals, dim=0) # [V, 3, H, W] depths = torch.stack(depths, dim=0) # [V, H, W] masks = torch.stack(masks, dim=0) # [V, H, W] cam_poses = torch.stack(cam_poses, dim=0) # [V, 4, 4] # normalized camera feats as in paper (transform the first pose to a fixed position) radius = torch.norm(cam_poses[0, :3, 3]) cam_poses[:, :3, 3] *= self.opt.cam_radius / radius transform = torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, self.opt.cam_radius], [0, 0, 0, 1]], dtype=torch.float32) @ torch.inverse(cam_poses[0]) cam_poses = transform.unsqueeze(0) @ cam_poses # [V, 4, 4] cam_poses_input = cam_poses[:self.opt.num_input_views].clone() # 模拟的设定input size,原图512可以模拟输入320 images = F.interpolate(images, size=(self.opt.input_size, self.opt.input_size), mode='bilinear', align_corners=False) # [V, C, H, W] albedos = F.interpolate(albedos, size=(self.opt.input_size, self.opt.input_size), mode='bilinear', align_corners=False) # increase_size= np.maximum((self.cur_epoch/self.total_epoch-self.original_scale),0)/(1-self.original_scale) * (self.opt.input_size-self.opt.output_size) # max_scale_input_size = int(self.opt.output_size + increase_size) if self.opt.is_crop and self.training: #max_scale_input_size=self.opt.input_size increase_size= np.maximum((self.cur_epoch/self.total_epoch-self.original_scale),0)/(1-self.original_scale) * (self.opt.input_size-self.opt.output_size) increase_size= np.maximum(self.opt.output_size*0.5,increase_size) max_scale_input_size = int(self.opt.output_size + increase_size) else: max_scale_input_size=self.opt.output_size # random crop, 先随机一个目标尺寸,再从中裁剪一块固定尺寸作为目标 if max_scale_input_size > self.opt.output_size: scaled_input_size = np.random.randint(self.opt.output_size, max_scale_input_size+1) else: scaled_input_size = self.opt.output_size target_images = v2.functional.resize( images, scaled_input_size, interpolation=3, antialias=True).clamp(0, 1) target_albedos = v2.functional.resize( albedos, scaled_input_size, interpolation=3, antialias=True).clamp(0, 1) # target_depths = v2.functional.resize( # target_depths, render_size, interpolation=0, antialias=True) target_alphas = v2.functional.resize( masks.unsqueeze(1), scaled_input_size, interpolation=0, antialias=True) # crop_params = v2.RandomCrop.get_params( # target_images, output_size=(self.opt.output_size, self.opt.output_size)) # 拿 mask的包围盒,并且保证包围盒大于crop patch crop_params = self.get_random_crop(target_alphas[:,0], self.opt.output_size ) target_images = torch.stack([v2.functional.crop(target_images[i], *crop_params[i]) for i in range(target_images.shape[0])],0) target_albedos = torch.stack([v2.functional.crop(target_albedos[i], *crop_params[i]) for i in range(target_albedos.shape[0])],0) target_alphas = torch.stack([v2.functional.crop(target_alphas[i], *crop_params[i]) for i in range(target_alphas.shape[0])],0) #target gt results['images_output']=target_images results['albedos_output']=target_albedos results['masks_output']=target_alphas #bake sdf bata schedule #results['t']=torch.tensor(self.cur_epoch/(self.opt.num_epochs*self.bata_line_scale), dtype=torch.float32).clamp(0, 1) #results['t']=torch.tensor(self.cur_itrs/self.beta_line_ites, dtype=torch.float32).clamp(0, 1) # data augmentation condition input image images_input = images[:self.opt.num_input_views].clone() if self.training: # apply random grid distortion to simulate 3D inconsistency if random.random() < self.opt.prob_grid_distortion: images_input[1:] = grid_distortion(images_input[1:]) # apply camera jittering (only to input!) if random.random() < self.opt.prob_cam_jitter: cam_poses_input[1:] = orbit_camera_jitter(cam_poses_input[1:]) #images_input = TF.normalize(images_input, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) results['input']=images_input #input view images, unused for tranformer based #results['input'] = None # for gs based mesh #for transformer hard code size images_input_vit = F.interpolate(images_input, size=(224, 224), mode='bilinear', align_corners=False) #images_input_vit = TF.normalize(images_input_vit, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) results['input_vit']=images_input_vit #if self.opt.volume_mode=='TRF': all_rays_o=[] all_rays_d=[] for i in range(vid_cnt): rays_o, rays_d = get_rays(cam_poses[i], scaled_input_size, scaled_input_size, self.opt.fovy) # [h, w, 3] all_rays_o.append(rays_o) all_rays_d.append(rays_d) all_rays_o=torch.stack(all_rays_o, dim=0) all_rays_d=torch.stack(all_rays_d, dim=0) if crop_params is not None: all_rays_o_crop=[] all_rays_d_crop=[] for k in range(all_rays_o.shape[0]): i, j, h, w = crop_params[k] all_rays_o_crop.append(all_rays_o[k][i:i+h, j:j+w, :]) all_rays_d_crop.append(all_rays_d[k][i:i+h, j:j+w, :]) all_rays_o=torch.stack(all_rays_o_crop, dim=0) all_rays_d=torch.stack(all_rays_d_crop, dim=0) results['all_rays_o']=all_rays_o results['all_rays_d']=all_rays_d # 相机外参,c2w # opengl to colmap camera for gaussian renderer cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction # c2w的逆,w2c*投影内参,等于mvp矩阵 # cameras needed by gaussian rasterizer cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4] cam_view_proj = cam_view @ self.proj_matrix # [V, 4, 4] cam_pos = - cam_poses[:, :3, 3] # [V, 3] #相机位子 results['cam_view'] = cam_view results['cam_view_proj'] = cam_view_proj results['cam_pos'] = cam_pos #lrm用的是内参和外参的混合,这里先直接用外参试下, 实验可行 results['source_camera']=cam_poses_input return results