File size: 5,380 Bytes
6a53dd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5dc65d
6a53dd4
 
 
 
e5dc65d
 
 
 
 
 
 
 
 
 
 
 
 
 
6a53dd4
 
 
e5dc65d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a53dd4
d7ac3f6
e5dc65d
 
6a53dd4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from src.modeling_t5 import T5ForSequenceClassification
import selfies as sf
import pandas as pd
from transformers import AutoTokenizer, pipeline
from chemistry_adapters.amino_acids import AminoAcidAdapter
from tqdm import tqdm
import gradio as gr


class xBitterT5_predictor:
    def __init__(
        self,
        xBitterT5_640_ckpt="cbbl-skku-org/xBitterT5-640",
        xBitterT5_720_ckpt="cbbl-skku-org/xBitterT5-720",
        device="cpu",
    ):
        self.xBitterT5_640_ckpt = xBitterT5_640_ckpt
        self.xBitterT5_720_ckpt = xBitterT5_720_ckpt
        self.device = device

        self.tokenizer = AutoTokenizer.from_pretrained(xBitterT5_640_ckpt)
        self.xBitterT5_640 = self.load_model(xBitterT5_640_ckpt)
        self.xBitterT5_720 = self.load_model(xBitterT5_720_ckpt)

        self.classifier_640 = pipeline(
            "text-classification",
            model=self.xBitterT5_640,
            tokenizer=self.tokenizer,
            device=self.device,
        )
        self.classifier_720 = pipeline(
            "text-classification",
            model=self.xBitterT5_720,
            tokenizer=self.tokenizer,
            device=self.device,
        )

    def load_model(self, ckpt):
        model = T5ForSequenceClassification.from_pretrained(ckpt)
        model.eval()
        model.to(self.device)
        return model

    def convert_sequence_to_smiles(self, sequence):
        adapter = AminoAcidAdapter()
        return adapter.convert_amino_acid_sequence_to_smiles(sequence)

    def conver_smiles_to_selfies(self, smiles):
        return sf.encoder(smiles)

    def predict(
        self,
        input_dict,
        model_type="xBitterT5-720",
        batch_size=4,
    ):
        assert model_type in ["xBitterT5-640", "xBitterT5-720"]
        df = pd.DataFrame(
            {"id": list(input_dict.keys()), "sequence": list(input_dict.values())}
        )

        df["smiles"] = df.apply(
            lambda row: self.convert_sequence_to_smiles(row["sequence"]),
            axis=1,
        )
        df["selfies"] = df.apply(
            lambda row: self.conver_smiles_to_selfies(row["smiles"]),
            axis=1,
        )

        df["sequence"] = df.apply(
            lambda row: "<bop>"
            + "".join("<p>" + aa for aa in row["sequence"])
            + "<eop>",
            axis=1,
        )
        df["selfies"] = df.apply(lambda row: "<bom>" + row["selfies"] + "<eom>", axis=1)
        df["text"] = df["sequence"] + df["selfies"]

        text_inputs = df["text"].tolist()

        if model_type == "xBitterT5-640":
            classifier = self.classifier_640
        else:
            classifier = self.classifier_720

        result = []
        for i in tqdm(range(0, len(text_inputs), batch_size)):
            batch = text_inputs[i : i + batch_size]
            result.extend(classifier(batch))

        y_pred, y_prob = [], []
        for pred in result:
            if pred["label"] == "bitter":
                y_prob.append(pred["score"])
                y_pred.append(1)
            else:
                y_prob.append(1 - pred["score"])
                y_pred.append(0)

        return {i: [y_prob[j], y_pred[j]] for j, i in enumerate(df["id"].tolist())}


predictor = xBitterT5_predictor()


def process_fasta(fasta_text):
    """
    Processes the input FASTA format text into a dictionary {id: sequence}.
    """
    fasta_dict = {}
    current_id = None
    current_sequence = []

    for line in fasta_text.strip().split("\n"):
        line = line.strip()
        if line.startswith(">"):  # Header line
            if current_id:
                fasta_dict[current_id] = "".join(current_sequence)
            current_id = line[1:]  # Remove '>'
            current_sequence = []
        else:
            current_sequence.append(line)

    # Add the last sequence
    if current_id:
        fasta_dict[current_id] = "".join(current_sequence)

    return fasta_dict


# Create a Gradio interface
def predict(choice, fasta_text):
    """
    Wrapper for Gradio to process the FASTA text.
    """
    fasta_dict = process_fasta(fasta_text)
    result = predictor.predict(fasta_dict, model_type=choice)
    result_df = pd.DataFrame(
        {
            "id": list(result.keys()),
            "probability": [i[0] for i in result.values()],
            "class": ["bitter" if i[1] == 1 else "non-bitter" for i in result.values()],
        }
    )
    # text_result = f"ID\tClass\tProbability\n"
    # for key, value in result.items():
    #     text_result += (
    #         f"{key}\t{'bitter' if value[1] == 1 else 'non-bitter'}\t{value[0]}\n"
    #     )
    return result_df


interface = gr.Interface(
    fn=predict,
    inputs=[
        gr.Dropdown(
            choices=["xBitterT5-640", "xBitterT5-720"],
            label="Select xBitterT5 variant",
            value="xBitterT5-720",
        ),
        gr.Textbox(
            label="Enter peptide sequences in FASTA format",
            lines=10,
            placeholder=">id1\nVAPFPE\n>id2\nRRPP\n>id3\nGH\nid4\nGVDTK",
        ),
    ],
    # outputs=gr.Textbox(label="Predictions", type="text"),
    outputs=gr.Dataframe(
        headers=["ID", "Class", "Probability"],
    ),
    title="xBitterT5",
    description=("Prediction of bitter peptides using xBitterT5."),
    flagging_mode="never",
)
# Launch the Gradio app
interface.launch()