|
import gradio as gr |
|
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer |
|
from threading import Thread |
|
import re |
|
import time |
|
from PIL import Image |
|
import torch |
|
import spaces |
|
|
|
|
|
|
|
|
|
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct") |
|
model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM-Instruct", |
|
torch_dtype=torch.bfloat16, |
|
|
|
).to("cuda") |
|
|
|
@spaces.GPU |
|
def model_inference( |
|
input_dict, history, decoding_strategy, temperature, max_new_tokens, |
|
repetition_penalty, top_p, progress=gr.Progress(track_tqdm=True) |
|
): |
|
yield ".." |
|
t0 = time.perf_counter() |
|
text = input_dict["text"] |
|
print(input_dict["files"]) |
|
if len(input_dict["files"]) > 1: |
|
images = [Image.open(image).convert("RGB") for image in input_dict["files"]] |
|
elif len(input_dict["files"]) == 1: |
|
images = [Image.open(input_dict["files"][0]).convert("RGB")] |
|
|
|
|
|
if text == "" and not images: |
|
gr.Error("Please input a query and optionally image(s).") |
|
|
|
if text == "" and images: |
|
gr.Error("Please input a text query along the image(s).") |
|
|
|
|
|
|
|
|
|
resulting_messages = [ |
|
{ |
|
"role": "user", |
|
"content": [{"type": "image"} for _ in range(len(images))] + [ |
|
{"type": "text", "text": text} |
|
] |
|
} |
|
] |
|
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True) |
|
inputs = processor(text=prompt, images=[images], return_tensors="pt") |
|
inputs = {k: v.to("cuda") for k, v in inputs.items()} |
|
generation_args = { |
|
"max_new_tokens": max_new_tokens, |
|
"repetition_penalty": repetition_penalty, |
|
|
|
} |
|
|
|
assert decoding_strategy in [ |
|
"Greedy", |
|
"Top P Sampling", |
|
] |
|
if decoding_strategy == "Greedy": |
|
generation_args["do_sample"] = False |
|
elif decoding_strategy == "Top P Sampling": |
|
generation_args["temperature"] = temperature |
|
generation_args["do_sample"] = True |
|
generation_args["top_p"] = top_p |
|
|
|
generation_args.update(inputs) |
|
|
|
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens= True) |
|
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens) |
|
generated_text = "" |
|
|
|
thread = Thread(target=model.generate, kwargs=generation_args) |
|
thread.start() |
|
|
|
|
|
yield "..." |
|
buffer = "" |
|
|
|
for new_text in streamer: |
|
|
|
print("First stream chunk") |
|
buffer += new_text |
|
generated_text_without_prompt = buffer |
|
time.sleep(0.01) |
|
yield buffer |
|
|
|
print("total time", time.perf_counter() - t0) |
|
|
|
examples=[ |
|
[{"text": "What art era do these artpieces belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}, "Greedy", 0.4, 512, 1.2, 0.8], |
|
[{"text": "I'm planning a visit to this temple, give me travel tips.", "files": ["example_images/examples_wat_arun.jpg"]}, "Greedy", 0.4, 512, 1.2, 0.8], |
|
[{"text": "What is the due date and the invoice date?", "files": ["example_images/examples_invoice.png"]}, "Greedy", 0.4, 512, 1.2, 0.8], |
|
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}, "Greedy", 0.4, 512, 1.2, 0.8], |
|
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}, "Greedy", 0.4, 512, 1.2, 0.8], |
|
] |
|
demo = gr.ChatInterface(fn=model_inference, title="SmolVLM: Small yet Mighty 💫", |
|
description="Play with [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) in this demo. To get started, upload an image and text or try one of the examples. This checkpoint works best with single turn conversations, so clear the conversation after a single turn.", |
|
examples=examples, |
|
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, |
|
additional_inputs=[gr.Radio(["Top P Sampling", |
|
"Greedy"], |
|
value="Greedy", |
|
label="Decoding strategy", |
|
|
|
info="Higher values is equivalent to sampling more low-probability tokens.", |
|
|
|
), gr.Slider( |
|
minimum=0.0, |
|
maximum=5.0, |
|
value=0.4, |
|
step=0.1, |
|
interactive=True, |
|
label="Sampling temperature", |
|
info="Higher values will produce more diverse outputs.", |
|
), |
|
gr.Slider( |
|
minimum=8, |
|
maximum=1024, |
|
value=512, |
|
step=1, |
|
interactive=True, |
|
label="Maximum number of new tokens to generate", |
|
), gr.Slider( |
|
minimum=0.01, |
|
maximum=5.0, |
|
value=1.2, |
|
step=0.01, |
|
interactive=True, |
|
label="Repetition penalty", |
|
info="1.0 is equivalent to no penalty", |
|
), |
|
gr.Slider( |
|
minimum=0.01, |
|
maximum=0.99, |
|
value=0.8, |
|
step=0.01, |
|
interactive=True, |
|
label="Top P", |
|
info="Higher values is equivalent to sampling more low-probability tokens.", |
|
)],cache_examples=False |
|
) |
|
|
|
|
|
|
|
|
|
demo.launch(debug=True) |
|
|