SmolVLM / app.py
cbensimon's picture
cbensimon HF staff
Update app.py
4437c88 verified
raw
history blame
5.78 kB
import gradio as gr
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
from threading import Thread
import re
import time
from PIL import Image
import torch
import spaces
#import subprocess
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM-Instruct",
torch_dtype=torch.bfloat16,
#_attn_implementation="flash_attention_2"
).to("cuda")
@spaces.GPU
def model_inference(
input_dict, history, decoding_strategy, temperature, max_new_tokens,
repetition_penalty, top_p, progress=gr.Progress(track_tqdm=True)
):
yield ".."
t0 = time.perf_counter()
text = input_dict["text"]
print(input_dict["files"])
if len(input_dict["files"]) > 1:
images = [Image.open(image).convert("RGB") for image in input_dict["files"]]
elif len(input_dict["files"]) == 1:
images = [Image.open(input_dict["files"][0]).convert("RGB")]
if text == "" and not images:
gr.Error("Please input a query and optionally image(s).")
if text == "" and images:
gr.Error("Please input a text query along the image(s).")
resulting_messages = [
{
"role": "user",
"content": [{"type": "image"} for _ in range(len(images))] + [
{"type": "text", "text": text}
]
}
]
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[images], return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()}
generation_args = {
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
}
assert decoding_strategy in [
"Greedy",
"Top P Sampling",
]
if decoding_strategy == "Greedy":
generation_args["do_sample"] = False
elif decoding_strategy == "Top P Sampling":
generation_args["temperature"] = temperature
generation_args["do_sample"] = True
generation_args["top_p"] = top_p
generation_args.update(inputs)
# Generate
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens= True)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
# thread.join()
yield "..."
buffer = ""
for new_text in streamer:
print("First stream chunk")
buffer += new_text
generated_text_without_prompt = buffer#[len(ext_buffer):]
time.sleep(0.01)
yield buffer
print("total time", time.perf_counter() - t0)
examples=[
[{"text": "What art era do these artpieces belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}, "Greedy", 0.4, 512, 1.2, 0.8],
[{"text": "I'm planning a visit to this temple, give me travel tips.", "files": ["example_images/examples_wat_arun.jpg"]}, "Greedy", 0.4, 512, 1.2, 0.8],
[{"text": "What is the due date and the invoice date?", "files": ["example_images/examples_invoice.png"]}, "Greedy", 0.4, 512, 1.2, 0.8],
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}, "Greedy", 0.4, 512, 1.2, 0.8],
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}, "Greedy", 0.4, 512, 1.2, 0.8],
]
demo = gr.ChatInterface(fn=model_inference, title="SmolVLM: Small yet Mighty 💫",
description="Play with [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) in this demo. To get started, upload an image and text or try one of the examples. This checkpoint works best with single turn conversations, so clear the conversation after a single turn.",
examples=examples,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True,
additional_inputs=[gr.Radio(["Top P Sampling",
"Greedy"],
value="Greedy",
label="Decoding strategy",
#interactive=True,
info="Higher values is equivalent to sampling more low-probability tokens.",
), gr.Slider(
minimum=0.0,
maximum=5.0,
value=0.4,
step=0.1,
interactive=True,
label="Sampling temperature",
info="Higher values will produce more diverse outputs.",
),
gr.Slider(
minimum=8,
maximum=1024,
value=512,
step=1,
interactive=True,
label="Maximum number of new tokens to generate",
), gr.Slider(
minimum=0.01,
maximum=5.0,
value=1.2,
step=0.01,
interactive=True,
label="Repetition penalty",
info="1.0 is equivalent to no penalty",
),
gr.Slider(
minimum=0.01,
maximum=0.99,
value=0.8,
step=0.01,
interactive=True,
label="Top P",
info="Higher values is equivalent to sampling more low-probability tokens.",
)],cache_examples=False
)
demo.launch(debug=True)