import gradio as gr from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer from threading import Thread import re import time from PIL import Image import torch import spaces #import subprocess #subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct") model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM-Instruct", torch_dtype=torch.bfloat16, #_attn_implementation="flash_attention_2" ).to("cuda") @spaces.GPU def model_inference( input_dict, history, decoding_strategy, temperature, max_new_tokens, repetition_penalty, top_p, progress=gr.Progress(track_tqdm=True) ): yield ".." t0 = time.perf_counter() text = input_dict["text"] print(input_dict["files"]) if len(input_dict["files"]) > 1: images = [Image.open(image).convert("RGB") for image in input_dict["files"]] elif len(input_dict["files"]) == 1: images = [Image.open(input_dict["files"][0]).convert("RGB")] if text == "" and not images: gr.Error("Please input a query and optionally image(s).") if text == "" and images: gr.Error("Please input a text query along the image(s).") resulting_messages = [ { "role": "user", "content": [{"type": "image"} for _ in range(len(images))] + [ {"type": "text", "text": text} ] } ] prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True) inputs = processor(text=prompt, images=[images], return_tensors="pt") inputs = {k: v.to("cuda") for k, v in inputs.items()} generation_args = { "max_new_tokens": max_new_tokens, "repetition_penalty": repetition_penalty, } assert decoding_strategy in [ "Greedy", "Top P Sampling", ] if decoding_strategy == "Greedy": generation_args["do_sample"] = False elif decoding_strategy == "Top P Sampling": generation_args["temperature"] = temperature generation_args["do_sample"] = True generation_args["top_p"] = top_p generation_args.update(inputs) # Generate streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens= True) generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens) generated_text = "" thread = Thread(target=model.generate, kwargs=generation_args) thread.start() # thread.join() yield "..." buffer = "" for new_text in streamer: print("First stream chunk") buffer += new_text generated_text_without_prompt = buffer#[len(ext_buffer):] time.sleep(0.01) yield buffer print("total time", time.perf_counter() - t0) examples=[ [{"text": "What art era do these artpieces belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}, "Greedy", 0.4, 512, 1.2, 0.8], [{"text": "I'm planning a visit to this temple, give me travel tips.", "files": ["example_images/examples_wat_arun.jpg"]}, "Greedy", 0.4, 512, 1.2, 0.8], [{"text": "What is the due date and the invoice date?", "files": ["example_images/examples_invoice.png"]}, "Greedy", 0.4, 512, 1.2, 0.8], [{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}, "Greedy", 0.4, 512, 1.2, 0.8], [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}, "Greedy", 0.4, 512, 1.2, 0.8], ] demo = gr.ChatInterface(fn=model_inference, title="SmolVLM: Small yet Mighty 💫", description="Play with [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) in this demo. To get started, upload an image and text or try one of the examples. This checkpoint works best with single turn conversations, so clear the conversation after a single turn.", examples=examples, textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, additional_inputs=[gr.Radio(["Top P Sampling", "Greedy"], value="Greedy", label="Decoding strategy", #interactive=True, info="Higher values is equivalent to sampling more low-probability tokens.", ), gr.Slider( minimum=0.0, maximum=5.0, value=0.4, step=0.1, interactive=True, label="Sampling temperature", info="Higher values will produce more diverse outputs.", ), gr.Slider( minimum=8, maximum=1024, value=512, step=1, interactive=True, label="Maximum number of new tokens to generate", ), gr.Slider( minimum=0.01, maximum=5.0, value=1.2, step=0.01, interactive=True, label="Repetition penalty", info="1.0 is equivalent to no penalty", ), gr.Slider( minimum=0.01, maximum=0.99, value=0.8, step=0.01, interactive=True, label="Top P", info="Higher values is equivalent to sampling more low-probability tokens.", )],cache_examples=False ) demo.launch(debug=True)