File size: 15,905 Bytes
52cef88
588d8f0
52cef88
 
 
588d8f0
52cef88
 
588d8f0
 
 
52cef88
588d8f0
52cef88
 
588d8f0
 
 
 
52cef88
588d8f0
52cef88
 
588d8f0
 
 
 
 
 
 
 
52cef88
588d8f0
52cef88
588d8f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52cef88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
588d8f0
52cef88
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import os

os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

import sys

sys.path.insert(0, './diffusers/src')

import cv2
import numpy as np
import PIL
import torch
from controlnet_aux import ZoeDetector
from diffusers import DPMSolverMultistepScheduler
from diffusers.image_processor import IPAdapterMaskProcessor
from diffusers.models import ControlNetModel
from huggingface_hub import snapshot_download
from insightface.app import FaceAnalysis
from pipeline import OmniZeroPipeline
from transformers import CLIPVisionModelWithProjection
from utils import align_images, draw_kps, load_and_resize_image


class OmniZeroSingle():
    def __init__(self,
        base_model="stabilityai/stable-diffusion-xl-base-1.0",
        device="cuda",
    ):
        snapshot_download("okaris/antelopev2", local_dir="./models/antelopev2")
        self.face_analysis = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
        self.face_analysis.prepare(ctx_id=0, det_size=(640, 640))

        dtype = torch.float16

        ip_adapter_plus_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
            "h94/IP-Adapter", 
            subfolder="models/image_encoder",
            torch_dtype=dtype,
        ).to(device)

        zoedepthnet_path = "okaris/zoe-depth-controlnet-xl"
        zoedepthnet = ControlNetModel.from_pretrained(zoedepthnet_path,torch_dtype=dtype).to(device)

        identitiynet_path = "okaris/face-controlnet-xl"
        identitynet = ControlNetModel.from_pretrained(identitiynet_path, torch_dtype=dtype).to(device)

        self.zoe_depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to(device)

        self.pipeline = OmniZeroPipeline.from_pretrained(
            base_model,
            controlnet=[identitynet, zoedepthnet],
            torch_dtype=dtype,
            image_encoder=ip_adapter_plus_image_encoder,
        ).to(device)

        config = self.pipeline.scheduler.config
        config["timestep_spacing"] = "trailing"
        self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero")

        self.pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "h94/IP-Adapter", "h94/IP-Adapter"], subfolder=[None, "sdxl_models", "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus_sdxl_vit-h.safetensors"])
   
    def get_largest_face_embedding_and_kps(self, image, target_image=None):
        face_info = self.face_analysis.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
        if len(face_info) == 0:
            return None, None
        largest_face = sorted(face_info, key=lambda x: x['bbox'][2] * x['bbox'][3], reverse=True)[0]
        face_embedding = torch.tensor(largest_face['embedding']).to("cuda")
        if target_image is None:
            target_image = image
        zeros = np.zeros((target_image.size[1], target_image.size[0], 3), dtype=np.uint8)
        face_kps_image = draw_kps(zeros, largest_face['kps'])
        return face_embedding, face_kps_image
    
    def generate(self,
        seed=42,
        prompt="A person",
        negative_prompt="blurry, out of focus",
        guidance_scale=3.0,
        number_of_images=1,
        number_of_steps=10,
        base_image=None,
        base_image_strength=0.15,
        composition_image=None,
        composition_image_strength=1.0,
        style_image=None,
        style_image_strength=1.0,
        identity_image=None,
        identity_image_strength=1.0,
        depth_image=None,
        depth_image_strength=0.5,        
    ):
        resolution = 1024

        if base_image is not None:
            base_image = load_and_resize_image(base_image, resolution, resolution)
        else:
            if composition_image is not None:
                base_image = load_and_resize_image(composition_image, resolution, resolution)
            else:
                raise ValueError("You must provide a base image or a composition image")

        if depth_image is None:
            depth_image = self.zoe_depth_detector(base_image, detect_resolution=resolution, image_resolution=resolution)
        else:
            depth_image = load_and_resize_image(depth_image, resolution, resolution)

        base_image, depth_image = align_images(base_image, depth_image)

        if composition_image is not None:
            composition_image = load_and_resize_image(composition_image, resolution, resolution)
        else: 
            composition_image = base_image

        if style_image is not None:
            style_image = load_and_resize_image(style_image, resolution, resolution)
        else:
            raise ValueError("You must provide a style image")
        
        if identity_image is not None:
            identity_image = load_and_resize_image(identity_image, resolution, resolution)
        else:
            raise ValueError("You must provide an identity image")
        
        face_embedding_identity_image, target_kps = self.get_largest_face_embedding_and_kps(identity_image, base_image)
        if face_embedding_identity_image is None:
            raise ValueError("No face found in the identity image, the image might be cropped too tightly or the face is too small")
        
        face_embedding_base_image, face_kps_base_image = self.get_largest_face_embedding_and_kps(base_image)
        if face_embedding_base_image is not None:
            target_kps = face_kps_base_image

        self.pipeline.set_ip_adapter_scale([identity_image_strength,
            {
                "down": { "block_2": [0.0, 0.0] },
                "up": { "block_0": [0.0, style_image_strength, 0.0] }
            },
            {
                "down": { "block_2": [0.0, composition_image_strength] },
                "up": { "block_0": [0.0, 0.0, 0.0] }
            }
        ])

        generator = torch.Generator(device="cpu").manual_seed(seed)

        images = self.pipeline(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            ip_adapter_image=[face_embedding_identity_image, style_image, composition_image],
            image=base_image,
            control_image=[target_kps, depth_image],
            controlnet_conditioning_scale=[identity_image_strength, depth_image_strength],
            identity_control_indices=[(0,0)],
            num_inference_steps=number_of_steps, 
            num_images_per_prompt=number_of_images,
            strength=(1-base_image_strength),
            generator=generator,
            seed=seed,
        ).images

        return images
    
class OmniZeroCouple():
    def __init__(self,
        base_model="stabilityai/stable-diffusion-xl-base-1.0",
        device="cuda",
    ):
        os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
        self.patch_onnx_runtime()

        snapshot_download("okaris/antelopev2", local_dir="./models/antelopev2")
        self.face_analysis = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
        self.face_analysis.prepare(ctx_id=0, det_size=(640, 640))

        self.dtype = dtype = torch.float16

        ip_adapter_plus_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
            "h94/IP-Adapter", 
            subfolder="models/image_encoder",
            torch_dtype=dtype,
        ).to(device)

        zoedepthnet_path = "okaris/zoe-depth-controlnet-xl"
        zoedepthnet = ControlNetModel.from_pretrained(zoedepthnet_path,torch_dtype=dtype).to(device)

        identitiynet_path = "okaris/face-controlnet-xl"
        identitynet = ControlNetModel.from_pretrained(identitiynet_path, torch_dtype=dtype).to(device)

        self.zoe_depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to(device)
        self.ip_adapter_mask_processor = IPAdapterMaskProcessor()

        self.pipeline = OmniZeroPipeline.from_pretrained(
            base_model,
            controlnet=[identitynet, identitynet, zoedepthnet],
            torch_dtype=dtype,
            image_encoder=ip_adapter_plus_image_encoder,
        ).to(device)

        config = self.pipeline.scheduler.config
        config["timestep_spacing"] = "trailing"
        self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero")

        self.pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "okaris/ip-adapter-instantid", "h94/IP-Adapter"], subfolder=[None, None, "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors"])
   
    def generate(self,
        seed=42,
        prompt="A person",
        negative_prompt="blurry, out of focus",
        guidance_scale=3.0,
        number_of_images=1,
        number_of_steps=10,
        base_image=None,
        base_image_strength=0.15,
        style_image=None,
        style_image_strength=1.0,
        identity_image_1=None,
        identity_image_strength_1=1.0,
        identity_image_2=None,
        identity_image_strength_2=1.0,
        depth_image=None,
        depth_image_strength=0.5,
        mask_guidance_start=0.0,
        mask_guidance_end=1.0,      
    ):

        resolution = 1024

        if base_image is not None:
            base_image = load_and_resize_image(base_image, resolution, resolution)

        if depth_image is None:
            depth_image = self.zoe_depth_detector(base_image, detect_resolution=resolution, image_resolution=resolution)
        else:
            depth_image = load_and_resize_image(depth_image, resolution, resolution)

        base_image, depth_image = align_images(base_image, depth_image)

        if style_image is not None:
            style_image = load_and_resize_image(style_image, resolution, resolution)
        else:
            raise ValueError("You must provide a style image")
        
        if identity_image_1 is not None:
            identity_image_1 = load_and_resize_image(identity_image_1, resolution, resolution)
        else:
            raise ValueError("You must provide an identity image")
        
        if identity_image_2 is not None:
            identity_image_2 = load_and_resize_image(identity_image_2, resolution, resolution)
        else:
            raise ValueError("You must provide an identity image 2")

        height, width = base_image.size

        face_info_1 = self.face_analysis.get(cv2.cvtColor(np.array(identity_image_1), cv2.COLOR_RGB2BGR))
        for i, face in enumerate(face_info_1):
            print(f"Face 1 -{i}: Age: {face['age']}, Gender: {face['gender']}")
        face_info_1 = sorted(face_info_1, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
        face_emb_1 = torch.tensor(face_info_1['embedding']).to("cuda", dtype=self.dtype)

        face_info_2 = self.face_analysis.get(cv2.cvtColor(np.array(identity_image_2), cv2.COLOR_RGB2BGR))
        for i, face in enumerate(face_info_2):
            print(f"Face 2 -{i}: Age: {face['age']}, Gender: {face['gender']}")
        face_info_2 = sorted(face_info_2, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
        face_emb_2 = torch.tensor(face_info_2['embedding']).to("cuda", dtype=self.dtype)

        zero = np.zeros((width, height, 3), dtype=np.uint8)
        # face_kps_identity_image_1 = self.draw_kps(zero, face_info_1['kps'])
        # face_kps_identity_image_2 = self.draw_kps(zero, face_info_2['kps'])

        face_info_img2img = self.face_analysis.get(cv2.cvtColor(np.array(base_image), cv2.COLOR_RGB2BGR))
        faces_info_img2img = sorted(face_info_img2img, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])
        face_info_a = faces_info_img2img[-1]
        face_info_b = faces_info_img2img[-2]
        # face_emb_a = torch.tensor(face_info_a['embedding']).to("cuda", dtype=self.dtype)
        # face_emb_b = torch.tensor(face_info_b['embedding']).to("cuda", dtype=self.dtype)
        face_kps_identity_image_a = draw_kps(zero, face_info_a['kps'])
        face_kps_identity_image_b = draw_kps(zero, face_info_b['kps'])

        general_mask = PIL.Image.fromarray(np.ones((width, height, 3), dtype=np.uint8))

        control_mask_1 = zero.copy()
        x1, y1, x2, y2 = face_info_a["bbox"]
        x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
        control_mask_1[y1:y2, x1:x2] = 255
        control_mask_1 = PIL.Image.fromarray(control_mask_1.astype(np.uint8))

        control_mask_2 = zero.copy()
        x1, y1, x2, y2 = face_info_b["bbox"]
        x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
        control_mask_2[y1:y2, x1:x2] = 255
        control_mask_2 = PIL.Image.fromarray(control_mask_2.astype(np.uint8))

        controlnet_masks = [control_mask_1, control_mask_2, general_mask]
        ip_adapter_images = [face_emb_1, face_emb_2, style_image, ]

        masks = self.ip_adapter_mask_processor.preprocess([control_mask_1, control_mask_2, general_mask], height=height, width=width)
        ip_adapter_masks = [mask.unsqueeze(0) for mask in masks]

        inpaint_mask = torch.logical_or(torch.tensor(np.array(control_mask_1)), torch.tensor(np.array(control_mask_2))).float()
        inpaint_mask = PIL.Image.fromarray((inpaint_mask.numpy() * 255).astype(np.uint8)).convert("RGB")

        new_ip_adapter_masks = []
        for ip_img, mask in zip(ip_adapter_images, controlnet_masks):
            if isinstance(ip_img, list):
                num_images = len(ip_img)
                mask = mask.repeat(1, num_images, 1, 1)

            new_ip_adapter_masks.append(mask)
            
        generator = torch.Generator(device="cpu").manual_seed(seed)

        self.pipeline.set_ip_adapter_scale([identity_image_strength_1, identity_image_strength_2,
            {
                "down": { "block_2": [0.0, 0.0] }, #Composition
                "up": { "block_0": [0.0, style_image_strength, 0.0] } #Style
            }
        ])

        images = self.pipeline(
            prompt=prompt,
            negative_prompt=negative_prompt, 
            guidance_scale=guidance_scale,
            num_inference_steps=number_of_steps,
            num_images_per_prompt=number_of_images,
            ip_adapter_image=ip_adapter_images,
            cross_attention_kwargs={"ip_adapter_masks": ip_adapter_masks},
            image=base_image,
            mask_image=inpaint_mask,
            i2i_mask_guidance_start=mask_guidance_start,
            i2i_mask_guidance_end=mask_guidance_end,
            control_image=[face_kps_identity_image_a, face_kps_identity_image_b, depth_image],
            control_mask=controlnet_masks,
            identity_control_indices=[(0,0), (1,1)],
            controlnet_conditioning_scale=[identity_image_strength_1, identity_image_strength_2, depth_image_strength],
            strength=1-base_image_strength,
            generator=generator,
            seed=seed,
        ).images

        return images

    def patch_onnx_runtime(
        self,
        inter_op_num_threads: int = 16,
        intra_op_num_threads: int = 16,
        omp_num_threads: int = 16,
    ):
        import os

        import onnxruntime as ort

        os.environ["OMP_NUM_THREADS"] = str(omp_num_threads)

        _default_session_options = ort.capi._pybind_state.get_default_session_options()

        def get_default_session_options_new():
            _default_session_options.inter_op_num_threads = inter_op_num_threads
            _default_session_options.intra_op_num_threads = intra_op_num_threads
            return _default_session_options

        ort.capi._pybind_state.get_default_session_options = get_default_session_options_new