File size: 5,651 Bytes
52cef88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import math
import PIL
from PIL import Image
import cv2
import numpy as np

from diffusers.utils import load_image

def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
    """
    Draw keypoints on an image.

    Args:
    image_pil (PIL.Image): Image on which to draw the keypoints.
    kps (list): List of keypoints to draw.
    color_list (list): List of colors to use for drawing the keypoints.

    Returns:
    PIL.Image: Image with keypoints drawn on it.
    """
    
    stickwidth = 4
    limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
    kps = np.array(kps)

    # w, h = image_pil.size
    # out_img = np.zeros([h, w, 3])
    if type(image_pil) == PIL.Image.Image:
        out_img = np.array(image_pil)
    else:
        out_img = image_pil

    for i in range(len(limbSeq)):
        index = limbSeq[i]
        color = color_list[index[0]]

        x = kps[index][:, 0]
        y = kps[index][:, 1]
        length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
        angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
        polygon = cv2.ellipse2Poly(
            (int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1
        )
        out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
    out_img = (out_img * 0.6).astype(np.uint8)

    for idx_kp, kp in enumerate(kps):
        color = color_list[idx_kp]
        x, y = kp
        out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)

    out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
    return out_img_pil


def load_and_resize_image(image_path, max_width, max_height, maintain_aspect_ratio=True):
    """
    Load and resize an image to the specified dimensions.
    
    Args:
    image_path (str): Path to the image file.
    max_width (int): Maximum width of the resized image.
    max_height (int): Maximum height of the resized image.
    maintain_aspect_ratio (bool): Whether to maintain the aspect ratio of the image.
    
    Returns:
    PIL.Image: Resized image.
    """

    # Open the image
    if isinstance(image_path, np.ndarray):
        image_path = Image.fromarray(image_path)

    image = load_image(image_path)

    # Get the current width and height of the image
    current_width, current_height = image.size

    if maintain_aspect_ratio:
        # Calculate the aspect ratio of the image
        aspect_ratio = current_width / current_height

        # Calculate the new dimensions based on the max width and height
        if current_width / max_width > current_height / max_height:
            new_width = max_width
            new_height = int(new_width / aspect_ratio)
        else:
            new_height = max_height
            new_width = int(new_height * aspect_ratio)
    else:
        # Use the max width and height as the new dimensions
        new_width = max_width
        new_height = max_height

    # Ensure the new dimensions are divisible by 8
    new_width = (new_width // 8) * 8
    new_height = (new_height // 8) * 8

    # Resize the image
    resized_image = image.resize((new_width, new_height))

    return resized_image


def align_images(image1, image2):
    """
    Resize two images to the same dimensions by cropping the larger image(s) to match the smaller one.

    Args:
    image1 (PIL.Image): First image to be aligned.
    image2 (PIL.Image): Second image to be aligned.

    Returns:
    tuple: A tuple containing two images with the same dimensions.
    """
    # Determine the new size by taking the smaller width and height from both images
    new_width = min(image1.size[0], image2.size[0])
    new_height = min(image1.size[1], image2.size[1])

    # Crop both images if necessary
    if image1.size != (new_width, new_height):
        image1 = image1.crop((0, 0, new_width, new_height))
    if image2.size != (new_width, new_height):
        image2 = image2.crop((0, 0, new_width, new_height))

    return image1, image2

def align_images_2(image1, image2):
    """
    Resize and crop the second image to match the dimensions of the first image by
    scaling to aspect fill and then center cropping the extra parts.

    Args:
    image1 (PIL.Image): First image which will act as the reference for alignment.
    image2 (PIL.Image): Second image to be aligned to the first image's dimensions.

    Returns:
    tuple: A tuple containing the first image and the aligned second image.
    """
    # Get dimensions of the first image
    target_width, target_height = image1.size

    # Calculate the aspect ratio of the second image
    aspect_ratio = image2.width / image2.height

    # Calculate dimensions to aspect fill
    if target_width / target_height > aspect_ratio:
        # The first image is wider relative to its height than the second image
        fill_height = target_height
        fill_width = int(fill_height * aspect_ratio)
    else:
        # The first image is taller relative to its width than the second image
        fill_width = target_width
        fill_height = int(fill_width / aspect_ratio)

    # Resize the second image to fill dimensions
    filled_image = image2.resize((fill_width, fill_height), Image.Resampling.LANCZOS)

    # Calculate top-left corner of crop box to center crop
    left = (fill_width - target_width) / 2
    top = (fill_height - target_height) / 2
    right = left + target_width
    bottom = top + target_height

    # Crop the filled image to match the size of the first image
    cropped_image = filled_image.crop((int(left), int(top), int(right), int(bottom)))

    return image1, cropped_image